首页|基于真实世界大数据构建及验证子宫颈癌患者的手术预后预测模型

基于真实世界大数据构建及验证子宫颈癌患者的手术预后预测模型

扫码查看
目的:构建并验证子宫颈癌手术患者无病生存率(DFS)和总生存率(OS)的列线图预测模型,为评估子宫颈癌手术患者预后提供参考依据。方法:回顾性分析2013 年3 月至2018 年10 月在空军军医大学西京医院行子宫颈癌根治性手术患者的临床、病理及随访资料。基于Cox回归分析、贝叶斯信息准则的向后逐步选择法和R2 筛选变量,使用净重新分类指数和综合判别改进指数比较后,选取预测效能较好的列线图作为预测模型。使用一致性指数和受试者工作特征曲线(ROC)检验该预测模型的效能。结果:共纳入 950 例子宫颈癌患者。构建DFS列线图的危险因素为国际妇产科联盟(FIGO)分期(2018)、宫旁浸润、浸润深度和肿瘤最大径线,训练集和验证集的一致性指数(C-index)分别为0。754 和0。720,训练集 1、3、5 年的ROC曲线下面积(AUC)分别为 0。74(95%CI 0。65~0。82)、0。77(95%CI 0。71~0。83)、0。79(95%CI 0。74~0。85),验证集1、3、5 年的AUC分别为0。72(95%CI 0。58~0。87)、0。75(95%CI 0。64~0。86)、0。72(95%CI 0。61~0。84)。构建OS列线图的危险因素为FIGO分期(2018)、组织学类型、淋巴脉管间隙浸润(LVSI)、宫旁浸润、手术切缘和浸润深度,训练集和验证集的一致性指数分别为 0。737 和 0。759,训练集 3、5 年的AUC 分别为0。76(95%CI 0。69~0。83)、0。78(95%CI 0。72~0。84),验证集 3、5 年的AUC分别为 0。76(95%CI 0。65~0。87)、0。79(95%CI 0。69~0。88)。结论:本研究基于真实世界大数据构建的子宫颈癌1、3、5年DFS的列线图和3、5 年OS的列线图,具有理想的预测效果,有助于临床医师正确评估子宫颈癌手术患者的预后,对患者诊疗和预后评价提供有力的参考依据。
Development and Verification of a Surgical Prognostic Nomogram for Patients with Cervical Cancer:Based on a Real World Cohort Study
Objective:To develop and verify a nomogram to predict disease-free survival(DFS)and overall survival(OS)for patients undergoing cervical cancer surgery,which may provide reference for evaluating the prognosis of cervical cancer patients undergoing surgery.Methods:The clinical,pathological and follow-up data of patients who underwent radical operation for cervical cancer in Xijing Hospital,Air Force Medical University from March 2013 to October 2018 were analyzed retrospectively.Based on Cox regression analysis,Bayesian Informa-tion Criterion(BIC)backward stepwise selection method and R square screening variables,Net Reclassification Index(NRI)and Integrated Discrimination Improvement(IDI)were used to compare the predictive efficiency of the model,and a nomogram with better predictive efficiency was selected.The consistency index(C-index)and the receiver operating characteristic curve(ROC)were used to test the efficiency of the nomogram.Results:A total of 950 patients with cervical cancer were enrolled in this study.The risk factors for constructing the DFS nomogram were FIGO stage(2018),parametrium invasion,invasion depth,and maximum tumor diameter.The C-index for DFS in the training cohort and the verification cohort were 0.754 and 0.720,respectively.The area under ROC of the training cohort for 1-,3-and 5-years was 0.74(95%CI 0.65-0.82),0.77(95%CI 0.71-0.83)and 0.79(95%CI0.74-0.85),and the areas under ROC of verification cohort 1-,3-and 5-years were 0.72(95%CI 0.58-0.87),0.75(95%CI 0.64-0.86)and 0.72(95%CI 0.61-0.84),respectively.The risk factors for con-structing the OS nomogram were FIGO stage(2018),histological type,LVSI,parametrium invasion,surgical mar-gin,and invasion depth.The C-index for OS in the training cohort and the verification cohort were 0.737 and 0.759,respectively.The area under ROC of the 3-and 5-year training cohort were 0.76(95%CI 0.69-0.83)and 0.78(95%CI 0.72-0.84),and the areas under ROC of verification cohort 3-and 5-years were 0.76(95%CI 0.65-0.87)and 0.79(95%CI 0.69-0.88),respectively.Conclusions:This study is based on real-world big data to construct nomogram of DFS for 1,3,and 5 years and OS for 3,and 5 years for cervical cancer,which have ideal predictive effects and help clinical physicians correctly evaluate the prognosis of cervical cancer surgery patients.It provides strong reference basis for diagnosis,treatment,and prognosis evaluation.

NomogramCervical cancerOverall survivalDisease-free survival

贺媛媛、荆茹、吕艳红、葛俊丽、陈必良、杨红、李佳

展开 >

空军军医大学西京医院妇产科,陕西 西安 710032

预测模型 子宫颈癌 总生存率 无病生存率

陕西省重点研发计划

2023-YBSF-484

2024

实用妇产科杂志
四川省医学会

实用妇产科杂志

CSTPCD北大核心
影响因子:2.564
ISSN:1003-6946
年,卷(期):2024.40(1)
  • 18