Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.