Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.