首页|基于SEER数据库构建子宫癌肉瘤患者生存预测模型

基于SEER数据库构建子宫癌肉瘤患者生存预测模型

扫码查看
目的:构建列线图预测子宫癌肉瘤(UCS)患者的生存期(OS).方法:从SEER数据库中提取2000~2020年UCS患者的临床数据信息,共纳入2635例患者,按7∶3比例随机分为训练队列和验证队列.采用单因素Cox回归分析、Lasso回归和多因素Cox分析,筛选影响UCS患者OS的独立风险因素.构建UCS患者1年和3年OS的列线图模型,运用受试者工作特征曲线(ROC)、校准曲线和决策曲线分析(DCA)来评价列线图的区分度和校准度.根据列线图得分将患者划分为低、中、高风险组,并与国际妇产科联盟(FIGO)分期系统进行比较.结果:年龄、种族、肿瘤大小、肿瘤分期、手术治疗、放疗、化疗和淋巴结转移是影响患者OS的独立因素(P<0.05),采用以上8个关键变量构建预测UCS患者1年和3年OS列线图模型.在训练队列和验证队列中,列线图模型C指数和ROC曲线下面积(AUC)值均大于0.7,表明模型具有较好的区分度.校准曲线显示预测结果和实际结果高度吻合.DCA曲线结果表明模型的临床效用和应用价值高于FIGO分期.根据列线图模型计算每位患者风险总分,将UCS患者划分为低风险组(<80分)、中风险组(80-130分)和高风险组(>130分).Kaplan-Meier生存曲线分析显示列线图具有较好的识别高风险人群的能力.结论:本研究基于多个独立预后因素,成功建立UCS患者生存预测模型,为临床医生在评估患者预后和制定个性化治疗策略提供了重要的工具.
Construction of a Survival Prediction Model of Uterine Carcinosarcoma Pa-tients Based on SEER Database
Objective:To establish a nomogram to predict overall survival(OS)of Uterine carcinosarcoma(UCS)patients.Methods:A total of 2635 UCS patients were selected from the Surveillance,Epidemiology and End Results(SEER)database between 2000 and 2020.The patients were randomly divided into a training cohort and a validation cohort in a 7∶3 ratio.Univariate Cox regression analysis,Lasso regression and multivariate Cox analysis was conducted to screen for independent risk factors affecting OS in UCS patients.We established a no-mogram for predicting the 1-and 3-year OS of UCS patients and evaluate the discrimination and calibration of the nomogram using receiver operating characteristic curve(ROC),calibration plots and decision curve analysis(DCA).According to the nomogram scores,patients were divided into low,medium,and high-risk groups and compared with the International Federation of Gynecology and Obstetrics(FIGO)staging system.Results:Age,race,tumor size,tumor stage,surgery,radiotherapy,chemotherapy and lymph node metastasis were identified as independent prognostic factors affecting patient OS(P<0.05),and the above eight key variables were selected to establish the nomogram for predicting 1-and 3-year OS in UCS patients.The C-index and the area under the ROC curve(AUC)values of both the training and validation cohorts were greater than 0.7,indicating good discriminative capabilities of the nomogram.The calibration curves showed high consistency between the predicted probability and actual survival results.Moreover,the DCA curves suggested the clinical utility and application value of the model were superior to those of the FIGO staging system.The total risk score of each patient was calculated ac-cording to the nomogram model.UCS patients were divided into the low-risk group(score<80),middle-risk group(score 80-130),and high-risk group(score>130).Kaplan-Meier survival analysis demonstrated that the nomo-gram had a good ability to identify high-risk individuals.Conclusions;The model is a useful tool for accurately predicting OS in UCS patients and can assist in making individualized interventions by providing valuable prognos-tic information.

Uterine carcinosarcomaNomogramOverall survivalSEER database

樊佳宁、吕娟、王新艳

展开 >

南京医科大学附属妇产医院南京市妇幼保健院妇产科,江苏南京 210004

子宫癌肉瘤 列线图 总生存期 SEER数据库

2024

实用妇产科杂志
四川省医学会

实用妇产科杂志

CSTPCD北大核心
影响因子:2.564
ISSN:1003-6946
年,卷(期):2024.40(12)