首页|基于风速波动幅度动态划分区间的ISSA-BP风电功率预测

基于风速波动幅度动态划分区间的ISSA-BP风电功率预测

扫码查看
为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法.首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅度的可视化分析,依据波动幅度曲线的第一、二、三时间点将全年数据动态划分为 4 个区间;其次,利用Tent混沌映射算法初始化麻雀种群位置得到改进麻雀搜索算法(improvement sparrow search algorithm,ISSA),对误差反向传播算法(back propagation,BP)的连接权和阈值进行优化,建立ISSA-BP 风电功率组合预测模型;最后,运用MATLAB仿真软件进行仿真验证.仿真结果表明,动态划分区间的ISSA-BP 风电功率预测方法能显著提高预测精度,对提高电力系统经济运行水平,促进风电消纳具有一定的理论实际意义.
ISSA-BP wind power prediction by interval based on dynamic division of wind speed fluctuation range
In order to solve the problem of low accuracy of traditional wind power prediction,a wind power combination prediction method based on dynamic interval division of wind speed fluctuation amplitude was proposed.Firstly,Kalman filtering was applied to the cleaned wind speed data to obtain the noise-reduced wind speed curve,The difference vector of adjacent elements in the curve was calculated and normalized to complete the visual analysis of the wind speed fluctuations.Secondly,the improvement sparrow search algorithm(ISSA)was obtained by initializing the sparrow population location using the Tent chaotic mapping algorithm,and the connection weights and thresholds of back propagation(BP)algorithm were optimized.The ISSA-BP wind power combination forecasting model was established.Finally,MATLAB simulation software was used for simulation verification.The simulation results show that the proposed dynamic interval division ISSA-BP wind power prediction method significantly improves the prediction accuracy,and has certain theoretical and practical significance for improving the economic operation level of power system and promoting the consumption of wind power.

improved sparrow search algorithmback propagationKalman filteringwind power forecast

唐杰、刘琳、刘白杨、邵武、管烨、易资兴

展开 >

邵阳学院 多电源地区电网运行与控制湖南省重点实验室,湖南 邵阳,422000

改进麻雀搜索算法 反向传播算法 卡尔曼滤波 风电功率预测

湖南省自然科学基金湖南省自然科学基金联合基金湖南省教育厅科研项目邵阳学院研究生创新项目

2022JJ502062023JJ5026322C0448CX2022SY037

2024

邵阳学院学报(自然科学版)
邵阳学院

邵阳学院学报(自然科学版)

影响因子:0.286
ISSN:1672-7010
年,卷(期):2024.21(1)
  • 10