首页|改进YOLOX的跨座式单轨PC轨道梁面裂纹检测算法

改进YOLOX的跨座式单轨PC轨道梁面裂纹检测算法

扫码查看
PC轨道梁作为跨座式单轨交通系统的重要组成部分,其表面裂纹缺陷会直接威胁整个交通线的运营安全.针对传统PC轨道梁面裂纹检测精度低、效率低等问题,提出一种基于改进YOLOX的轨道梁面裂纹检测方法.该方法通过在加强空间特征提取网络中使用 Ghost 轻量化卷积提取目标特征,以降低模型计算复杂度;将自适应特征融合(adaptively spatial feature fusion,ASFF)模块嵌入特征融合层,让模型自适应学习各个特征层间的联系,加强网络对裂纹区域的重视程度;使用双三次插值法进行上采样,进一步提升网络检测性能.实验结果表明,改进后模型相较于原基准模型平均检测精度提升 4.40%,在参数量上比原模型下降25.08%,每秒检测裂纹图像数量为 119 帧,说明模型在准确性和实时性方面符合实际工程需求.
Improving the method of straddle monorail PC track beam surface crack detection based on YOLOX
PC rail beam is an important part of the straddle monorail transit system,and its surface cracks directly threaten the safety of the entire traffic line.To address the problems of low accuracy and poor efficiency in traditional PC track beam surface crack detection,a track beam surface crack detection method based on an improved YOLOX was proposed.In the method,Ghost lightweight convolution was applied to extract target features in the enhanced feature extraction network,thereby reducing the model's computational complexity.The adaptively spatial feature fusion(ASFF)module was embedded in the feature fusion layer,allowing the model to adaptively learn the relationships between each feature layer,and the network paid more attention to the crack regions.Bicubic interpolation method was used for up-sampling to further improve the performance of network detection.The results of the experiment on the self-made track beam surface crack dataset show that compared with the original one,the average detection accuracy of the improved model increased by 4.40%,while the number of parameters decreased by 25.08%,and 119 frames of crack images were detected per second,indicating that the model meets the accuracy and real-time demands of practical engineering.

PC track beamcrack defect detectionadaptively spatial feature fusion(ASFF)bicubic interpolation method

黄伟、尚正阳、凌基

展开 >

安徽工程大学 机械与汽车工程学院,安徽 芜湖,241000

安徽海螺川崎工程有限公司,安徽 芜湖,241070

江苏大学 能源与动力工程学院,江苏 镇江,212000

玉柴联合动力股份有限公司,安徽 芜湖,241000

展开 >

PC轨道梁 裂纹缺陷检测 自适应特征融合 双三次插值法

汽车新技术安徽省工程技术研究中心项目安徽工程大学校级科研项目

QCKJ202104Xjky2022001

2024

邵阳学院学报(自然科学版)
邵阳学院

邵阳学院学报(自然科学版)

影响因子:0.286
ISSN:1672-7010
年,卷(期):2024.21(4)
  • 8