首页|基于VMD构建ISSA-ELM电力电子电路软故障诊断的方法研究

基于VMD构建ISSA-ELM电力电子电路软故障诊断的方法研究

扫码查看
为了解决电力电子电路软故障诊断准确性不佳等问题,采用一种结合变分模态分解(variational mode decomposition,VMD)与改进的麻雀搜索算法(improved sparrow search algorithm,ISSA)优化极限学习机(extreme learning machine,ELM)的故障诊断策略.首先,对收集的故障信号实施VMD分解,得到本征模态分量(intrinsicmode function,IMF),从线性重构后的IMF中提取时域参数作为故障诊断的特征向量.其次,为提高ELM在故障诊断中的精度,提出ISSA对ELM的参数优化,建立ISSA-ELM模型.ISSA首先采用Circle混沌映射对种群初始化,然后在跟随者位置更新处引入收敛因子,最后引入反向学习和柯西变异对当前最优解进行扰动等3种方法改善麻雀搜索算法(sparrow search algorithm,SSA).通过8类基准函数测试,ISSA相较于其他4种智能算法表现出更快的收敛速度和更高的寻优精度.结果表明,在功率为150 W的Boost电路软故障诊断中VMD联合ISSA-ELM模型平均准确率达到99.000 0%以上,高于其他模型准确率,证明提出的DC-DC电路软故障诊断方法的可行性.
Constructing ISSA-ELM power electronic circuit soft fault diagnosis method based on VMD
To address the issue of poor accuracy in soft fault diagnosis of power electronic circuits,a fault diagnosis strategy that combines variational mode decomposition(VMD)with an improved sparrow search algorithm(ISSA)to optimize the extreme learning machine(ELM)was designed.This study initially used VDM to decompose collected fault signals to extract intrinsic mode functions(IMF)and then extracted time-domain parameters from the linearly reconstructed IMF,which act as feature vectors for fault diagnosis.Next,the parameters of the ELM were optimized through the ISSA to enhance the diagnostic accuracy of ELM,resulting in the establishment of the ISSA-ELM model.The ISSA first utilized circle chaotic mapping to initialize the population,then introduced a convergence factor for updating the follower's position,and finally applied three methods,including inverse learning and disturbing the optimal solution by Cauchy mutations to improve the sparrow search algorithm(SSA).Through testing with eight benchmark functions,ISSA exhibited a faster convergence speed and higher optimization accuracy compared to four other intelligent algorithms.The results indicated that the VMD combined with the ISSA-ELM model achieved an average accuracy exceeding 99.000 0%in soft fault diagnosis of a 150 W Boost circuit,surpassing the accuracy of other models,which confirms the feasibility of the proposed soft fault diagnosis method for DC-DC circuits.

variational modal decomposition(VDM)extreme learning machine(ELM)improved sparrow search algorithm(ISSA)circuit soft fault diagnosis

马帅、姜媛媛

展开 >

安徽理工大学电气与信息工程学院,安徽淮南,232001

安徽理工大学环境友好材料与职业健康研究院,安徽芜湖,241003

变分模态分解 极限学习机 改进的麻雀搜索算法 电路软故障诊断

2024

邵阳学院学报(自然科学版)
邵阳学院

邵阳学院学报(自然科学版)

影响因子:0.286
ISSN:1672-7010
年,卷(期):2024.21(6)