首页|基于Optuna超参数优化XGBoost的混凝土抗压强度预测模型

基于Optuna超参数优化XGBoost的混凝土抗压强度预测模型

扫码查看
为实现对混凝土的抗压强度精确预测以提升工程设计水准和施工质量,基于Optuna超参数优化XGBoost梯度提升算法建立了高效的非线性预测模型.首先,通过从文献中收集的1 110组混凝土试验数据,完成了 XGBoost算法与LightGBM、NGBoost、CatBoost等算法的混凝土抗压强度预测精度对比;随后,采用Optuna算法对表现最佳的XGBoost模型进行超参数优化.结果表明,在训练集和测试集中,采用XGBoost算法预测混凝土抗压强度时的精度均高于其他3种算法;经过Optuna超参数优化后,XGBoost模型的预测精度又进一步提升;在测试集中,优化后的XGBoost模型还表现出良好的泛化能力.因此,优化XGBoost模型的混凝土强度预测能力得到证实,可为未来的工程实践提供参考.
Prediction model for concrete compressive strength based on XGBoost hyperparametric optimization with Optuna
This study built a robust nonlinear forecasting model leveraging the XGBoost gradient boosting algorithm,enhanced through hyperparameter optimization via Optuna,to accurately estimate concrete compressive strength,thereby improving engineering design level and construction quality.A comparative analysis was conducted for the predictive accuracy of XGBoost against other algorithms—LightGBM,NGBoost,and CatBoost—utilizing a dataset comprising 1110 unique concrete test samples from existing literature.The evaluation demonstrated that XGBoost outperformed these alternatives in terms of accuracy for both training and testing datasets.Subsequently,Optuna was applied to fine-tune the hyperparameters of the best-performing XGBoost model.The results reveal that the hyperparameter optimization significantly enhances the predictive precision of the XGBoost model.In testing datasets,the optimized XGBoost model demonstrated strong generalization capabilities,confirming its effectiveness in predicting concrete strength and serving as a valuable reference for future engineering practices.

concrete compressive strengthOptunaXGBoostprediction modelmodel validation

李帅、陶伟、喻晨阳、余沛

展开 >

信阳学院土木工程学院,河南信阳,464000

混凝土抗压强度 Optuna XGBoost 预测模型 模型验证

2024

邵阳学院学报(自然科学版)
邵阳学院

邵阳学院学报(自然科学版)

影响因子:0.286
ISSN:1672-7010
年,卷(期):2024.21(6)