Numerical analysis for mechanical performance of bonding slip of FRP reinforced concrete beam
In order to study the bonding performance between FRP bars and concrete and the mechanical properties of FRP bars and FRP reinforced concrete members, the finite element numerical model for FRP reinforced concrete beam was established with ABAQUS. In the model, the plastic damage model was adopted for the concrete, and the linear unit was adopted for the FRP bars. The FRP bar units and concrete units were linked through nonlinear spring units. Through choosing the bonding slip constitutive relationship and the computational formula of anchorage length as well as adjusting the number and position of added springs, the effect of bonding slip on the mechanical performance of FRP reinforced concrete beam was considered. The numerical simulation results are very consistent with the experimental results in the literatures, and the correctness of the proposed finite element model gets verified. Furthermore, the numerical results have a certain guiding role in the experiments of FRP reinforced concrete structures.
fiber-reinforced compositeconcretebonding slipanchorage lengthmechanical performancefinite elementnonlinear analysisdamage model