首页|基于模糊神经网络的电网消防预警算法

基于模糊神经网络的电网消防预警算法

扫码查看
针对传统基于阈值判别方法的电网火灾预警系统预测精度低、抗干扰能力弱的问题,提出了一种基于模糊神经网络的电网消防预警算法.该算法利用神经网络学习大规模电网数据,使用模糊逻辑推理算法来提升预测结果的推理能力,并通过结合神经网络对大规模数据的学习能力和模糊逻辑算法的推理能力来分析电网线路参数,从而提升电网消防预警系统的精度和抗干扰能力.实验与仿真结果表明,所提出方法能显著提升电网火灾的预警精度,且使用模糊逻辑推理可以得到更符合实际情况的电网火灾预警结果.
Algorithm based on fuzzy neural network for power grid fire warning
Aiming at the problems of low prediction accuracy and weak anti-interference ability of power grid fire early warning system based on threshold discrimination method,a power grid fire early warning algorithm based on fuzzy neural network was proposed.The neural networks were used to learn large-scale power grid data,fuzzy logic reasoning algorithms were used to improve the reasoning ability of predicted results,and neural network learning capabilities for large-scale data and reasoning capabilities of fuzzy logic algorithm were combined to analyze power grid line parameters for the improvement of the accuracy and anti-interference ability of power grid fire early warning system.Experiments and simulation results show that the as-proposed method can significantly improve the accuracy of power grid fire warning,and the use of fuzzy logic reasoning can obtain power grid fire warning results in close consistence with the actual situation.

power grid warninganti-interferenceneural networkfuzzy reasoningsignal processing

赵嘉兴、荆玉智、张彦

展开 >

山西省电力公司 电力科学研究院,山西 阳泉 045000

电网预警 抗干扰 神经网络 模糊推理 信号处理

国家自然科学基金青年科学基金项目山西省电力公司科技项目

616866325205C018005C

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(1)
  • 6