首页|计及温度累积效应的智能电网负荷预测算法

计及温度累积效应的智能电网负荷预测算法

扫码查看
针对温度累积效应对负荷变化造成的影响,提出了一种计及温度累积效应的智能电网负荷预测算法.将持续高温对电网负荷的影响计入预测模型中,并利用模块化神经网络保证了对温度累积效应学习的独立性和准确性.由三个子网络构成多模块神经网络的第一层,以温度、时间及负荷特征为输入参数,所得负荷预测的准确度可达 98.13%,且误差较修正前降低了 28.63%.结果表明,所提算法具有更高的预测准确性和运行效率.
Load forecasting algorithm of smart grid considering temperature cumulative effect
Aiming at the influence of temperature cumulative effect on load change,a load forecasting algorithm for smart grid considering temperature cumulative effect was studied.The effect of continuous high temperature on grid load was included in the forecasting model.A modular neural network was used to ensure the independence of temperature cumulative effect learning and the improvement of accuracy.Three sub-networks formed the first layer of the multi-module neural network,with temperature,time and load characteristics as input parameters.The accuracy of load forecasting is 98.13%,and the error is 28.63%lower than that before correction.The results show that the as-proposed algorithm has higher forecasting accuracy and operation efficiency.

load forecastingsmart gridtemperature cumulative effecttemperature correctionneural networkmulti-moduletemperature characteristictime characteristicload characteristic

杨小磊、过夏明、路轶、张大伟、廖晔

展开 >

西南交通大学电气工程学院,四川成都 611756

国网四川省电力公司电力调度控制中心,四川成都 610041

北京清能互联科技有限公司 智能产品部,北京 100084

负荷预测 智能电网 温度累积效应 温度修正 神经网络 多模块 温度特征 时间特征 负荷特征

国家自然科学基金国家电网四川省电力公司科技项目

414022465219992000MN

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(2)
  • 26