首页|多模态马尔科夫决策泛在电力物联网大数据智能挖掘

多模态马尔科夫决策泛在电力物联网大数据智能挖掘

扫码查看
针对泛在电力物联网结构复杂、数据多样且不确定的问题,提出了一种基于多模态马尔科夫决策的泛在电力物联网大数据智能挖掘方法.该方法构建了一种基于最大熵的马尔科夫决策算法,对电力泛在物联网进行故障诊断和负荷预测,具有标记样本需求量小、置信度高的特点.通过结合电气量信息及开关量信息来提取电网数据特征,从而充分利用多模态数据样本.仿真分析与实验结果表明,相比于传统方法,所提方法能够有效识别出包括信息畸变在内的电网故障,提升电网故障诊断的准确率和电网负荷预测的精度.
Intelligent big data mining based on multi-modal Markov decision for ubiquitous Internet of Things in electricity
Aiming at the problem of complex structure,diverse and uncertain data of the ubiquitous Internet of Things in electricity,an intelligent big data mining method based on multi-modal Markov decision for ubiquitous Internet of Things in electricity was proposed.This method constructed a Markov decision algorithm based on maximum entropy for the fault diagnosis and load forecast of ubiquitous Internet of Things,featuring small demand for labeled samples and high confidence.This method extracted power grid data characteristics by combining electrical quantity information and switch quantity information,and could make full use of multi-modal data samples.Simulation analysis and experimental results show that the as-proposed method can effectively identify grid faults including information distortion in comparison with traditional methods,and can effectively improve the accuracy of grid fault diagnosis and the precision of grid load forecasting.

power gridubiquitous Internet of Things in electricityMarkov decisionmaximum entropyfault diagnosisload forecastingelectrical quantityswitch quantity

陈彬、徐欢、邹文景

展开 >

南方电网数字电网研究院 数字化部,广东 广州 510700

电网 泛在电力物联网 马尔科夫决策 最大熵 故障诊断 负荷预测 电气量 开关量

国家自然科学基金南方电网数字电网研究院科技项目

61501285ZBKJXM00000012

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(2)
  • 20