首页|基于蝙蝠优化算法的智能机器人路径规划方法

基于蝙蝠优化算法的智能机器人路径规划方法

扫码查看
为了解决智能机器人规划路径时,由于未能获取机器人信号目标强度,路径规划存在适应度值低和规划时间长的问题,提出基于蝙蝠优化算法的智能机器人路径规划方法.建立机器人模型并获取机器人目标信号强度,利用粒子群算法搜索机器人移动目标,结合蝙蝠算法和黄金正弦算法获取种群平均位置,通过分阶段搜索流程,实现机器人移动路径规划.结果表明:所提方法的路径规划时间仅为2.0 s,适应度达到了24.1,不可行解个数为零,该方法有效提高了适应度值,降低了规划时间,具备可行性和实际应用价值.
Path planning method based on bat optimization algorithm for intelligent robot
In order to solve the problem of low fitness value and long planning time resulting from the failure to obtain the target signal strength for intelligent robot in path planning,an intelligent robot path planning method based on bat optimization algorithm was proposed.The robot model was established to obtain its target signal strength,and the moving target was searched by particle swarm optimization.Bat algorithm and golden sine algorithm were combined to obtain the average position of population.The robot's moving path was planned by searching process in stages.The results show that the path planning time of as-proposed method is only 2.0 s,the fitness is 24.1,and the number of infeasible solutions is zero.The as-proposed method can effectively improve the fitness value with reduced planning time,showing feasibility and value for practical application.

bat optimization algorithmtarget signal strengthintelligent robotpath planningplanning methodgolden sine algorithmparticle swarm optimizationrobot model

罗育林、胡长江、邓敦杰

展开 >

大连理工大学电子信息与电气工程学院,辽宁大连 116000

南方电网深圳数字电网研究院有限公司,广东深圳 518000

桂林电子科技大学 海洋工程学院,广西 桂林 541004

蝙蝠优化算法 目标信号强度 智能机器人 路径规划 规划方法 黄金正弦算法 粒子群算法 机器人模型

广西自然科学基金

2015GXNSFAA139269

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(2)
  • 17