首页|优化随机森林模型的工控网络异常检测

优化随机森林模型的工控网络异常检测

扫码查看
针对现有Modbus TCP协议的异常检测效率和准确率低的问题,提出了一种基于混合鲸鱼算法优化的随机森林异常检测模型.该模型将柯西变异和自适应动态惯性权重相结合,利用柯西变异算子增加种群多样性,避免算法陷入局部最优;引用自适应动态惯性权重因子提高种群的全局搜索能力,使算法的收敛速度加快.仿真实验结果表明,该模型相较于其他分类算法有着更高的准确率和较强的适应性,证明了模型在实际应用中具有较高的检测精度.
Industrial control network abnormal detection based on optimized random forest model
Aiming at the lower efficiency and accuracy of the existing Modbus TCP protocol for abnormal detection,a random forest abnormal detection model based on hybrid whale optimization algorithm was proposed.In this model,Cauchy mutation and adaptive dynamic inertia weight were combined.On the one hand,Cauchy mutation operator was used to increase population diversity and avoid the algorithm falling into local optimum.On the other hand,the adaptive dynamic inertia weight factor was used to improve the global search ability of the population,in order to increase the convergence speed of algorithm.Simulation results show that the as-proposed model has higher accuracy and stronger adaptability than other classification algorithms,indicating that the model also has higher detection accuracy in practical application.

industrial control networkabnormal detectionindustrial protocolwhale optimization algorithmrandom forestchaotic mappingCauchy mutationself adaptive weight

宗学军、王润鹏、何戡、连莲

展开 >

沈阳化工大学 信息工程学院,辽宁 沈阳 110142

沈阳化工大学 辽宁省石油化工行业信息安全重点实验室,辽宁 沈阳 110142

工控网络 异常检测 工业协议 鲸鱼算法 随机森林 混沌映射 柯西变异 自适应权重

辽宁省"兴辽英才计划"项目

XLYC2002085

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(2)
  • 15