首页|面向电网施工人员识别的轻量化检测网络

面向电网施工人员识别的轻量化检测网络

扫码查看
针对电网施工环境多样、传统方法存在监控盲区导致监控精度和覆盖面低的问题,提出了一种面向电网工作人员识别的轻量化检测网络,以高空及地面立体化的巡查模式来监控电网工作人员的作业行为.该方法采用一个轻量化的目标检测网络检测出监控视频中的电网工作人员,并判断其是否佩戴安全帽,使用人员识别网络来辨别未佩戴安全帽人员的身份.仿真实验结果表明,所提方法可以实现立体化电网工作人员作业行为巡查,相比于传统方法,所提出的轻量化网络具有更小的计算量,可达到63.4%的识别精度.
Lightweight detection network for grid worker recognition
Aiming at the problems of low monitoring accuracy and coverage caused by the diversity of power grid construction environment and the existence of monitoring blind areas in traditional methods,a lightweight detection network dedicated to the identification of power grid workers was proposed to monitor the work behavior of power grid workers through the high-altitude and ground three-dimensional patrol mode.A lightweight target detection network was used to detect the power grid workers in the surveillance video,and judge whether they wore helmets or not,and then the personal recognition network was used to identify the worker not wearing helmets.The simulation results show that the as-proposed method can realize the three-dimensional inspection of the work behavior of power grid workers.Compared with the traditional method,the as-proposed method has lesser computation and can achieve a recognition accuracy of 63.4%.

surveillance videopyramid pooling networksafety helmet wearingdeep learninglightweightpersonal recognition

胡戈飚、林志驰、郭政、赵文硕

展开 >

南昌大学电气工程学院,江西南昌 330036

国网江西省电力有限公司建设分公司,江西南昌 330012

西华大学电气与电子信息学院,四川 成都 610000

监控视频 金字塔池化网络 安全帽佩戴 深度学习 轻量化 身份识别

国家自然科学基金国家电网科技项目

5136701452182420001B

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(3)
  • 20