首页|基于IWOA-ELM-AE的电力资产信息管理系统异常数据检测方法

基于IWOA-ELM-AE的电力资产信息管理系统异常数据检测方法

扫码查看
针对当前电力资产信息管理系统难以准确自主发现异常数据的问题,提出了一种基于IWOA-ELM-AE的电力资产信息管理系统异常数据检测方法.在管理系统框架下分析了可能存在的异常类型,将改进鲸鱼优化算法(IWOA)用于优化极限学习机自编码器(ELM-AE),建立了电力信息系统异常数据优化检测模型.将模型应用于电力资产信息异常数据检测,并建立性能评估指标体系以衡量其效果.结果表明:所提方法的检测性能评估结果与传统模型相比具有显著优势,能够更为准确地检测电力资产信息中存在的异常数据.
Abnormal data detection method based on IWOA-ELM-AE for power asset information management system
Aiming at the problem that the current power asset information management system is difficult to detect abnormal data accurately and independently,a method based on IWOA-ELM-AE for detecting abnormal data in the power asset information management system was proposed.The analysis for possible anomaly types under the framework of the management system was performed,the improved whale optimization algorithm(IWOA)was used to optimize the ELM-AE,and the corresponding abnormal data optimization detection model for power information system was established.The as-proposed model was applied to the detection of abnormal data of power asset information,and the performance evaluation index system was established to measure its effect.The results show that the test performance evaluation results of as-proposed method has remarkable advantages over the traditional model,and can detect the abnormal data in the power asset information more accurately.

information management systempower assetabnormal data detectionextreme learning machineauto-encoderwhale optimization algorithmtest performanceevaluation index

李凯、靳书栋、刘宏志、王艳梅、杨晓营

展开 >

山东省电力公司 经济技术研究院,山东 济南 250022

信息管理系统 电力资产 异常数据检测 极限学习机 自编码器 鲸鱼优化算法 检测性能 评估指标

山东省科技计划

S2021RCDT2B0826

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(3)
  • 26