首页|基于BP人工神经网络的简支梁桥结构振动响应预测

基于BP人工神经网络的简支梁桥结构振动响应预测

扫码查看
针对有限元模型存在工作量大、计算耗时、无法实现结构响应的快速预测等问题,提出了基于BP神经网络算法的简支梁桥结构应力与位移预测模型.以某简支梁桥为工程背景,通过Midas/Civil有限元软件建立三维杆系有限元模型,并在考虑参数不确定性的基础上使用有限元模型得到完善的训练与测试样本数据集,建立了基于人工神经网络的桥梁结构响应预测模型.研究结果表明,构建的人工神经网络预测模型可在满足预测精度的基础上实现结构响应的快速预测,荷载试验实测值与模型预测值的最大误差在 12.46%以内,且拟合优度均在 0.9 以上.该预测模型后期可与桥梁健康监测系统相结合,实现简支梁桥结构响应的实时分析,可应用于简支梁的结构响应评估工作.
Prediction of vibration response based on BP artificial neural network for simply supported beam bridge structures
To address the problems of large workload,time-consuming calculation and inability to achieve rapid prediction of structural response in finite element models,a structural stress and displacement prediction model based on BP neural network algorithm for simply supported beam bridge was proposed.Taking a simply supported beam bridge as the engineering background,a three-dimensional finite element model of the beam system was established by using Midas/Civil finite element software.Taking into account parameter uncertainty,a comprehensive training and testing sample dataset was obtained by using the finite element model,and an artificial-neural-network-based bridge structure response prediction model was established.The research results show that the artificial neural network prediction model can achieve rapid prediction of structural response on the prerequisite of satisfying prediction accuracy.The maximum error between the measured value of load test and the predicted value by the model is within 12.46%,and the goodness of fit is above 0.9.This prediction model can be combined with the bridge health monitoring system in the later stage to achieve real-time analysis of the structural response of simply supported beam bridges,and can be applied to the structural response evaluation of simply supported beams.

simply supported beam bridgeartificial neural networkstructural responsefinite element modelstressstructural evaluation

赵立财

展开 >

台湾科技大学 营建工程系,台湾 台北 10607

中铁十九局集团 第三工程有限公司,辽宁 沈阳 110136

简支梁桥 人工神经网络 结构响应 有限元模型 应力 结构评估

辽宁省"兴辽英才计划"青年拔尖人才项目中铁十九局集团有限公司科技研发计划

XLYC20071462021-B03

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(3)
  • 20