首页|基于ICEEMDAN-DCN-Transformer的短期电力负荷预测

基于ICEEMDAN-DCN-Transformer的短期电力负荷预测

扫码查看
针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境特征并行输入到DCN-Transformer中进行预测,并将各组预测数据线性相加得到完整的预测结果.以泉州市电力负荷历史数据为基础进行实验,建立 4 种单一预测模型和 3 种组合预测模型作为对比模型,对该地10 d、240 h的电力负荷序列加以预测.结果表明,相较于传统算法,所提算法可以显著提高负荷预测的精度并有效降低误差评价指标值,为电力系统的安全运行和规划制定提供理论依据.
Short-term power load forecasting method based on ICEEMDAN-DCN-Transformer
To address the problem that traditional load forecasting methods are susceptible to complex environmental factors,a combined short-term electric load forecasting model based on ICEEMDAN-DCN-Transformer was proposed,the original power load data was decomposed into several IMF and a Res by ICEEMDAN method.Taking into account the influence of complex environmental factors,the decomposed components and environmental characteristics were input into DCN-Transformer in parallel for prediction.Finally,the sets of prediction data were linearly summed to obtain the complete prediction results.Experiments were conducted according to the historical data of power load in Quanzhou City,four single prediction models and three combined prediction models were established as comparison models to predict the 10-day 240 h power load sequence at the location.The results show that the as-proposed algorithm can significantly improve the accuracy of load forecasting and effectively reduce the value of the error evaluation index,compared with the traditional algorithm,providing a theoretical basis for the safe operation and planning of power system.

power load forecastingICEEMDANDCNprediction accuracyshort-term loadcombined forecasting modelerror evaluation

芦志凡、赵倩

展开 >

上海电力大学 电子与信息工程学院,上海 201306

电力负荷预测 改进型完全自适应噪声集合经验模态分解算法 深度交叉网络 预测精度 短期负荷 组合预测模型 误差评价

国家自然科学基金项目

61802250

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(4)
  • 14