首页|基于随机森林优化RL的电力工程造价预测

基于随机森林优化RL的电力工程造价预测

扫码查看
针对现阶段电力工程造价数据预测准确度较低的问题,提出了一种基于随机森林优化RL的相关预测算法.通过分析影响电力工程造价的因素,将其按照影响程度的大小进行分级,利用随机森林算法加以筛选,并采用筛选后的影响因素特征向量作为预测模型的训练和测试数据.同时,将电力工程造价预测问题转化为输电线路规划问题,再使用强化学习优化蚁群算法的参数来构建电力工程造价预测模型.经过实验对照,综合两种栅格尺寸结果,所提方案比两种对照组算法的电子工程造价分别降低了 2.97%、3.78%.
Power project cost prediction based on random forest optimization RL
Aiming at the problem of lower accuracy of power project cost data prediction at the present stage,a power project cost prediction algorithm based on random forest optimization RL was proposed.By analyzing the factors that affect the cost of power projects,the random forest algorithm was used to screen the factors according to the degree of impact on the cost of power projects.The filtered factor eigenvector was used as the training and testing data of the power project cost prediction model.The problem of power project cost prediction was transformed to the problem of transmission line planning,and the parameters of ant colony algorithm were optimized by reinforcement learning to build the power project cost prediction model.Through the contrast experiment,in combination with the results for two grid sizes,the power project cost described in this paper is reduced by 2.97%and 3.78%,respectively,compared with the two contrast group algorithms.

power transmission and transformation projectproject costrandom forestreinforcement learningant colony algorithmtransmission line planningdata predictioneigenvector

张文静、刘云、周波、洪崇、王立功

展开 >

华北电力大学电气与电子工程学院,河北保定 071003

河北省电力有限公司互联网部,河北石家庄 050001

河北省电力有限公司经济技术研究院,河北石家庄 050001

武汉大学电气与自动化学院,湖北武汉 430072

华北电力大学能源动力与机械工程学院,河北保定 071003

河北赛克普泰计算机咨询服务有限公司软件造价部,河北石家庄 050081

展开 >

输变电工程 工程造价 随机森林 强化学习 蚁群算法 输电线路规划 数据预测 特征向量

2024

沈阳工业大学学报
沈阳工业大学

沈阳工业大学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-1646
年,卷(期):2024.46(6)