首页|非线性模型在储渗体预测中的应用

非线性模型在储渗体预测中的应用

扫码查看
储渗体为地层中具有一定渗透能力的孔隙与裂缝相互叠加而成的独立储集体,储渗体的分布大多与孔、缝、洞的发育存在直接关系.储渗体预测与常规储层预测最大的不同之处在于由于储渗体常分布在裂缝发育地区,所以需要对裂缝进行预测.蓬莱地区须二段致密砂岩孔隙结构复杂,孔渗相关性较差,常规测井资料和方法基本无法识别裂缝,影响了储渗体分类预测.本文选取具有参数少,建模快并适用于研究区测井资料多变量参数特征的随机森林分类算法建立分类模型,可自主评估变量重要性且能平衡误差的随机森林分类算法实现了单井储渗体纵向分布预测.通过对典型井的分析,结合已有钻井的含气性、测试、试采等与孔渗分布区间的相关性总结了储层分类评价标准.运用部分典型井进行建模,达到了 96%的储层预测正确率.由此模型作出的储层类型预测解释图,可直观的看出不同类型的储渗体所在井段的位置及有效储层厚度,解决了蓬莱地区须二段致密砂岩储渗体分类预测的难题,为非均质性极强的致密砂岩储渗体分类预测工作提供了一个新的解决办法,具有一定的借鉴性.
Application of nonlinear models in predicting storage-permeation body
Storage-permeation body are independent reservoirs formed by the superposition of pores and fractures with certain permeability in the formation.The distribution of storage-permeation body is mostly directly related to the development of pores,fractures and caves.The biggest difference between storage-permeation body prediction and conventional reser-voir prediction is that storage-permeation body prediction is often distributed in areas with developed fractures,so it is necessary to predict fractures.The pore structure of the dense sandstone in the second member of Xujiahe formation in Penglai area is complex,and the correlation between porosity and permeability is poor.Conventional logging data and methods are basically unable to identify fractures,which affects the classification and prediction of storage-permeation body.In this paper,the random forest classification algorithm with few parameters,fast modeling and suitable for multivariate parameter characteristics of well log-ging data in the study area is selected to establish the classification model.The random for-est classification algorithm,which can independently assess the importance of variables and can balance the error,realizes the prediction of vertical distribution of single well storage-permeation body.Based on the analysis of typical wells and the correlation between the gas content,testing,and production testing of existing wells and the distribution range of porosity and permeability,the evaluation criteria for reservoir classification were summarized.By us-ing some typical wells for modeling,a reservoir prediction accuracy of 96%was achieved.The reservoir type prediction interpretation diagram made by this model can intuitively see the location and effective reservoir thickness of different types of storage-permeation body in the well section,solving the problem of classification and prediction of tight sandstone stor-age-permeation body in the second member of Xujiahe formation in Penglai area.This pro-vides a new solution for the classification and prediction of tight sandstone reservoirs with extremely strong heterogeneity,and has certain reference value.

the second member of Xujiahe formationlogging datarandom foreststorage-permeation body prediction

任杰、侯克均、缪祥禧、樊靖宇、熊晨皓、吴晓光、章顺利、田钧名、廖哲渊、徐兵

展开 >

中国石化经纬有限公司,四川成都 610100

中国石油西南油气田分公司开发事业部,四川成都 610066

中国石化勘探分公司,四成川都 610047

中国石化西南油气分公司勘探开发研究院,四川成都 610047

中国石化西南油气分公司采气一厂,四川德阳 618000

成都理工大学能源学院,四川成都 610059

展开 >

须家河组二段 测井资料 随机森林 储渗体预测

2024

石油化工应用
宁夏化工学会

石油化工应用

影响因子:0.276
ISSN:1673-5285
年,卷(期):2024.43(1)
  • 8