首页|基于深度学习的陆相页岩油储层可压性评价方法

基于深度学习的陆相页岩油储层可压性评价方法

扫码查看
考虑到传统卷积神经网络(CNN)在提取局部特征方面的优异性能,双向长短期记忆神经网络(BiLSTM)能够更好地捕捉测井数据中的双向依赖关系和地质变化,以及注意力机制增强重要信息的感知能力,将三者的优势结合起来,提出了深度混合神经网络(CBiLSTM-AT).实验结果表明,与传统方法相比,基于均匀流形逼近与投影(UMAP)的可压性评价方法更适合陆相页岩油储层.CBiLSTM-AT优于传统的神经网络模型,实现了更高的预测精度.所提出的方法更高效、更准确,为储层改造提供了有效的技术支持.
A method for fracability evaluation of continental shale oil reservoir based on deep learning
Considering the excellent performance of traditional convolutional neural network(CNN)in extracting local features,the ability of bidirectional long and short-term memory neural network(BiLSTM)to better capture bidirectional dependencies and geological varia-tions in logging data,as well as the attentional mechanism to enhance the perceptual ability of important information,the advantages of all three are combined,and a deep hybrid neural network(CBiLSTM-AT)is proposed.The experimental results show that the fracability e-valuation method based on uniform manifold approximation and projection(UMAP)is more suitable for continental shale oil reservoirs than the traditional method.CBiLSTM-AT outper-forms the traditional neural network model and achieves higher prediction accuracy.The proposed method is more efficient and accurate,and provides effective technical support for reservoir stimulation.

continentalshale oilfracabilitydeep learning

梅雨、姜旭、杨文博

展开 >

西安石油大学石油工程学院,陕西西安 710065

陕西省油气井及储层渗流与岩石力学重点实验室西安石油大学,陕西西安 710065

陕西延长石油(集团)有限责任公司研究院,陕西西安 710065

陆相 页岩油 可压性 深度学习

2024

石油化工应用
宁夏化工学会

石油化工应用

影响因子:0.276
ISSN:1673-5285
年,卷(期):2024.43(4)
  • 10