首页|基于GA-BP神经网络的南海东部气井产能预测

基于GA-BP神经网络的南海东部气井产能预测

扫码查看
针对南海东部气田群水下井口气井占比高,气井产能测试成本高、难度大、测试精度不高等问题,本文基于南海东部气田 33 口气井的实际数据,利用遗传算法(GA,Genetic Algorithm)优化的BP神经网络方法建立了南海东部气井产能预测模型,并与传统的BP神经网络模型预测结果及现场实测值进行对比.研究结果表明:BP神经网络模型预测的气井产能平均相对误差为 36.8%,GA-BP神经网络模型预测的平均相对误差降低至 4.7%.GA-BP神经网络模型预测值更接近实际测试值,预测的相对误差更小,为南海东部气井产能预测提供了一个高效可行的方法,研究结果对指导气井配产和管理具有重要意义.
Prediction of gas well productivity in eastern South China Sea based on GA-BP neural network
Considering the high proportion of subsea wellhead gas wells in the eastern South China Sea,as well as the high cost,difficulty,and low accuracy of gas productivity testing,this paper establishes a productivity prediction model using BP neural network method opti-mized by genetic algorithm(GA)based on actual data of 33 gas wells in the eastern South China Sea,and the prediction results are compared with that of BP neural network model and measured data.The research results show that the average relative error of the BP neural network model for gas well productivity prediction is 36.8%,and the average relative error of the GA-BP neural network model is 4.7%.The predicted values of GA-BP neural network model are closer to the actual test values,and the relative error of prediction is smaller,pro-viding an efficient and feasible method for predicting the productivity of gas wells in the eastern South China Sea.The research results have guiding significance for gas well produc-tion allocation and management.

offshore gas wellproductivity predictiongenetic algorithmneural network

汪毅、王亚会、唐圣来、洪舒娜、陈斯宇

展开 >

中海石油(中国)有限公司深圳分公司,广东深圳 518000

海上气井 产能预测 遗传算法 神经网络

2024

石油化工应用
宁夏化工学会

石油化工应用

影响因子:0.276
ISSN:1673-5285
年,卷(期):2024.43(9)