首页|基于循环神经网络的压缩机组性能预测模型

基于循环神经网络的压缩机组性能预测模型

扫码查看
压缩机组运行中关键参数监测取值是判断机组是否正常运行的主要影响因素,但当前在各个基层站场,大量的数据仅保存为备份文件作为事故发生后查找原因的途径,并没有被有效的利用.提出了基于循环神经网络的压缩机组性能预测模型,利用数据节点表示首先离散化监测数据取值,以减少数据冗余,之后依据相关系数获得不同时间点内各个参数之间的相关度,通过近邻节点挖掘获得关键参数的时序近邻节点集,并作为循环神经网络的训练集来预测关键参数的取值,以此判断机组的运行状态.以数据采集与监控系统(SCADA)数据集进行实验验证,结果表明所提模型对出口温度的预测取值具有较好的性能,对其中一次典型出口温度异常事件的评价指标绝对平均误差和均方根误差值分别为0.88和0.92,进一步表明所提模型具有较强的泛化能力和预测准确度.
Recurrent Neural Network-based Performance Prediction Model for Compressor Units
The monitoring values of key parameters of compressor unit operation are the primary factors for determining whether or not the units are operating normally.However,at each individual grass-roots unit station,lots of data are only stored as backup files for post-incident investigation,and are not effectively used.A compressor unit performance prediction model based on recurrent neural networks is proposed.The monitoring data values are first discretized using data nodes to reduce data redundancy.Then,the correlation among different parameters at different time points are obtained according to correlation coefficient.By mining neighboring nodes,a set of temporal neighboring nodes for the key parameters are obtained,and it is used as the training set for the recurrent neural network to predict the values of the key parameters,and it is used to judge the operating status of the units.Experimental validation is carried out with SCADA dataset.The result indicates that the proposed model performs well in predicting the values of the outlet temperature.The evaluation metrics,MAE and RMSE,for a typical abnormal event in the outlet temperature are 0.88 and 0.92,respectively.These results further indicate that the proposed model exhibits strong generalization ability and predictive accuracy.

compressor unitrecurrent neural networkbig datadata collecting and monitoring systemprediction model

刘鹏涛

展开 >

国家管网集团西部管道有限责任公司,甘肃兰州 730070

压缩机组 循环神经网络 大数据 数据采集与监控系统 预测模型

西一线站控系统升级改造项目

GWLH132022085

2024

石油化工自动化
中国石化集团宁波工程有限公司 全国化工自控设计技术中心站 中国石化集团公司自控设计技术中心站

石油化工自动化

影响因子:0.527
ISSN:1007-7324
年,卷(期):2024.60(1)
  • 5