首页|基于融合机器学习的管道焊缝缺陷识别方法研究

基于融合机器学习的管道焊缝缺陷识别方法研究

扫码查看
为提高管道焊缝处不同缺陷类型的自动识别,以开挖后的射线焊缝图像为基础,通过对比池化域和特征图的方差信息,采用方差池化方法对传统卷积神经网络的池化层运算进行修改,随后通过鲸鱼算法实现卷积神经网络(CNN)模型超参数的选取,最终形成融合机器学习模型用于焊缝缺陷的分类,并与其余模型进行了对比验证.结果表明,鲸鱼算法可在较短时间内实现卷积核数量和大小、池化核数量和大小、卷积核激活函数类型、学习率等参数的优选;融合机器学习模型的分类结果中,未熔合和未焊透缺陷的分类准确率最高;该模型在分类准确率、训练时间和稳定性上优于其余CNN模型和支持向量机模型.研究结果可为其余压力容器或压力管道焊缝缺陷的识别提供实际参考,具有较强的通用性和扩展性.
Study on Defect Identification Method of Pipeline Weld Based on Integrated Machine Learning
To improve the automatic identification of different defect types in pipeline weld,based on the excavated X-ray weld images,and through comparing the variance information of the pooled domain and characteristic-graph,the pooled layer operation of the traditional convolutional neural network is modified by using the square difference pooling method,and then the selection of CNN model hyperparameters is realized by using whale algorithm.Finally,a integrated machine learning model is formed for the classification of weld defects,and are compared and verified with other models.The results show that the whale algorithm can optimize parameters such as the number and size of convolutional kernel,the number and size of pooled kernel,the type of convolutional kernel activation function,and the learning rate in a short time.In the classification results of integrated machine learning model,the classification accuracy of unfused and unwelded defects is the highest.The proposed model is superior to other CNN models and SVM models in classification accuracy,training time and stability.The research results can provide practical reference for the identification of weld defects in other pressure vessels or pressure pipelines,and have strong universality and expansibility.

machine learningpipeline weld jointdefect identificationCNN modelwhale optimization algorithmpooling

李超华、许再胜

展开 >

中石化中原油建工程有限公司,河南濮阳 457001

机器学习 管道焊缝 缺陷识别 CNN模型 鲸鱼算法 池化

2024

石油化工自动化
中国石化集团宁波工程有限公司 全国化工自控设计技术中心站 中国石化集团公司自控设计技术中心站

石油化工自动化

影响因子:0.527
ISSN:1007-7324
年,卷(期):2024.60(1)
  • 12