首页|基于改进YOLOv5s的无人机航拍视频中道路异常目标检测算法

基于改进YOLOv5s的无人机航拍视频中道路异常目标检测算法

扫码查看
在使用无人机进行机动车道行人与非机动车检测过程中,发现目标检测精度低、效果差的问题。为解决这些问题,提出一种针对无人机的行人与非机动车检测算法YOLOv5s-P2S。首先,基于原有的PAFPN特征融合方案,将YOLOv5s模型的Neck部分进行扩展,并增加专门针对小目标的检测层;然后,在预测部分添加小目标检测头,对小目标检测层输出特征图进行预测;最后,将YOLOv5s的定位损失函数改进为SIOU,提高检测精度和锚框的回归效率。实验结果表明,与YOLOv5s模型相比,YOLOv5s-P2S的平均精度均值mAP50提高了0。05,参数量仅增加0。2M。YOLOv5s-P2S能够满足无人机视角的行人与非机动车目标检测的准确性和实时性要求。
Abnormal road objects detection algorithm in UAV aerial videos based on improved YOLOv5s
During the use of UAV for pedestrian and non-motorized vehicle detection in motorway,the problem of low accuracy and poor performance in object detection was found.To solve these prob-lems,a pedestrian and non-motorized vehicle detection algorithm YOLOv5s-P2S was proposed for UAV perspective.Firstly,the neck part of the YOLOv5s model was extended based on the original PAFPN feature fusion scheme,and a detection layer specifically for small object was added.Then,a small object detection head was added to the prediction part to predict the output feature map of the small object detection layer.Finally,the localization loss function of YOLOv5s was modified to SIOU to improve the detection accuracy and regression efficiency of the anchor box.The experimental results showed that compared with the YOLOv5s model,the average accuracy mean mAP50 of YOLOv5s-P2S increased by 0.05,and the parameters only increased by 0.2M.YOLOv5s-P2S can meet the accuracy and real-time requirements of pedestrian and non-motorized vehicle object detection for UAV perspective.

YOLOv5sroad object detectionsmall object detection layerSIOUfeature fusionUAV aerial videos

赵磊、孙鹏、刘岩松、沈喆

展开 >

沈阳航空航天大学 民用航空学院,沈阳 110136

中国刑事警察学院 公安信息技术与情报学院,沈阳 110854

YOLOv5s 道路目标检测 小目标检测层 SIOU 特征融合 无人机航拍视频

国家重点研发计划专项

2017YFC0822204

2024

沈阳航空航天大学学报
沈阳航空工业学院

沈阳航空航天大学学报

影响因子:0.374
ISSN:2095-1248
年,卷(期):2024.41(1)
  • 20