Trans-scale computation of cryogenic composite tank based on multi-fiber RVE and clustering analysis
Using the carbon fiber-reinforced composite tank can remarkably reduce the weight of the launch vehicle.However,the analysis method for cryogenic tanks subjected to mechanical-thermal loads remains to be studied,especially to accurately consider the microthermal stress produced between fiber and matrix in the cryogenic environment.A representative volume model containing multiple fi-bers was adopted,combined with the matrix and fiber failure criteria,to establish a microscopic stress field and failure prediction model.The k-means clustering method was used for dimensionality reduc-tion calculation,and an efficient and high-fidelity trans-scale analysis method for composite tanks was proposed.The results of illustrative examples show that the proposed method can accurately predict the elastic constants and failure strength of the composite single-layer plate according to the thermal and mechanical constants of fiber and matrix.The leakage failure process of a composite tank subjected to mechanical-thermal loads was simulated,and the critical load and failure state were given.