实验技术与管理2024,Vol.41Issue(1) :63-69.DOI:10.16791/j.cnki.sjg.2024.01.008

基于轻量化SSD的交通标志检测算法

Traffic sign detection algorithm based on lightweight SSD

张刚 王运明 彭超亮
实验技术与管理2024,Vol.41Issue(1) :63-69.DOI:10.16791/j.cnki.sjg.2024.01.008

基于轻量化SSD的交通标志检测算法

Traffic sign detection algorithm based on lightweight SSD

张刚 1王运明 2彭超亮2
扫码查看

作者信息

  • 1. 江苏建筑职业技术学院 建筑智能学院,江苏徐州 221116;江苏建筑节能与建造技术协同创新中心,江苏徐州 221116
  • 2. 大连交通大学 自动化与电气工程学院,辽宁大连 116028
  • 折叠

摘要

实时精确的交通标志检测是自动驾驶和智能交通的关键技术.针对现有智能检测算法检测复杂真实道路场景下的交通标志速度慢、无法较好地适用于嵌入式终端设备的问题,提出了一种基于轻量化SSD的交通标识检测算法.该算法采用MobileNetV3_large网络替代VGG16网络,可减少模型参数,提高检测实时性;利用添加SE模块的逆残差结构B-neck替换对应的标准卷积增强低层特征层的语义信息;设计改进RFB网络提升小交通标志的检测能力,重新设置预设先验框的尺寸,提升模型对特定数据集的检测能力.实验结果表明,改进SSD算法在中国交通标志检测数据集上的mAP值可达89.04%,比MobileNet-SSD算法提高了5.26%;帧率可达60frames/s,比SSD算法提高了 23 frames/s.所提算法具有较高的实时性和检测精度,对复杂交通环境具有更好的鲁棒性.

Abstract

[Objective]Real-time and accurate traffic sign detection is critical for autonomous driving and intelligent transportation.Existing intelligent detection algorithms exhibits low detection speeds and cannot be efficiently adapted to embedded-terminal devices for detecting complex real-world road scenes.To address this problem,a traffic sign detection algorithm based on lightweight SSD is proposed.[Methods]The algorithm replaces the VGG16 network with the MobileNetV3_large network to reduce model parameters and improve detection speed.Furthermore,it uses an inverse residual structure B-neck with an additional SE module to replace the corresponding standard convolution,thereby enhancing the semantic information of low-level feature layers.The improved RFB network is designed to enhance the detection capability of small traffic signs,and the size of the preset prior boxes is reset to improve the detection capability of the model for specific datasets.[Results]The experimental results show that the improved SSD algorithm achieves an mAP value of 89.04%on the Chinese traffic sign detection dataset CCTSDB,which is 5.26%higher than that of the MobileNet-SSD algorithm.FPS reaches 60 frames/s,which is 23 frames/s higher than that of the SSD algorithm.[Conclusions]The proposed algorithm exhibits high real-time performance and detection accuracy and is robust in complex traffic environments.

关键词

交通标志检测/SSD/MobileNetV3_large/逆残差结构/RFB/先验框

Key words

traffic sign detection/SSD/MobileNetV3_large/inverse residual structure/RFB/priori box

引用本文复制引用

基金项目

江苏省高等学校自然科学研究面上项目(21KJB510048)

江苏建筑节能与建造技术协同创新中心青年博士基金指导项目(SJXTBZ2114)

徐州市基础研究计划(KC22058)

出版年

2024
实验技术与管理
清华大学

实验技术与管理

CSTPCD北大核心
影响因子:1.651
ISSN:1002-4956
参考文献量13
段落导航相关论文