首页|基于轻量化SSD的交通标志检测算法

基于轻量化SSD的交通标志检测算法

扫码查看
实时精确的交通标志检测是自动驾驶和智能交通的关键技术。针对现有智能检测算法检测复杂真实道路场景下的交通标志速度慢、无法较好地适用于嵌入式终端设备的问题,提出了一种基于轻量化SSD的交通标识检测算法。该算法采用MobileNetV3_large网络替代VGG16网络,可减少模型参数,提高检测实时性;利用添加SE模块的逆残差结构B-neck替换对应的标准卷积增强低层特征层的语义信息;设计改进RFB网络提升小交通标志的检测能力,重新设置预设先验框的尺寸,提升模型对特定数据集的检测能力。实验结果表明,改进SSD算法在中国交通标志检测数据集上的mAP值可达89。04%,比MobileNet-SSD算法提高了5。26%;帧率可达60frames/s,比SSD算法提高了 23 frames/s。所提算法具有较高的实时性和检测精度,对复杂交通环境具有更好的鲁棒性。
Traffic sign detection algorithm based on lightweight SSD
[Objective]Real-time and accurate traffic sign detection is critical for autonomous driving and intelligent transportation.Existing intelligent detection algorithms exhibits low detection speeds and cannot be efficiently adapted to embedded-terminal devices for detecting complex real-world road scenes.To address this problem,a traffic sign detection algorithm based on lightweight SSD is proposed.[Methods]The algorithm replaces the VGG16 network with the MobileNetV3_large network to reduce model parameters and improve detection speed.Furthermore,it uses an inverse residual structure B-neck with an additional SE module to replace the corresponding standard convolution,thereby enhancing the semantic information of low-level feature layers.The improved RFB network is designed to enhance the detection capability of small traffic signs,and the size of the preset prior boxes is reset to improve the detection capability of the model for specific datasets.[Results]The experimental results show that the improved SSD algorithm achieves an mAP value of 89.04%on the Chinese traffic sign detection dataset CCTSDB,which is 5.26%higher than that of the MobileNet-SSD algorithm.FPS reaches 60 frames/s,which is 23 frames/s higher than that of the SSD algorithm.[Conclusions]The proposed algorithm exhibits high real-time performance and detection accuracy and is robust in complex traffic environments.

traffic sign detectionSSDMobileNetV3_largeinverse residual structureRFBpriori box

张刚、王运明、彭超亮

展开 >

江苏建筑职业技术学院 建筑智能学院,江苏徐州 221116

江苏建筑节能与建造技术协同创新中心,江苏徐州 221116

大连交通大学 自动化与电气工程学院,辽宁大连 116028

交通标志检测 SSD MobileNetV3_large 逆残差结构 RFB 先验框

江苏省高等学校自然科学研究面上项目江苏建筑节能与建造技术协同创新中心青年博士基金指导项目徐州市基础研究计划

21KJB510048SJXTBZ2114KC22058

2024

实验技术与管理
清华大学

实验技术与管理

CSTPCD北大核心
影响因子:1.651
ISSN:1002-4956
年,卷(期):2024.41(1)
  • 13