首页|衍射仪的机械制造误差对拟合可信度极限的影响

衍射仪的机械制造误差对拟合可信度极限的影响

扫码查看
全谱结构拟合是获得研究对象精细结构的一种重要方法,X射线多晶衍射仪测试的角度准确度直接影响全谱结构拟合的正确性和可信度,而测角仪的机械制造误差是影响测量角度准确度不可忽视的因素。该文采用模拟计算方法对由蜗轮蜗杆系统的制造误差造成的X射线多晶衍射全谱拟合结果的可信度进行了分析,结果表明对theta-theta衍射仪而言,机械制造的角度准确度至少要达到±0。003°,拟合结果才是有可信度的,所以只有采用直接在衍射仪轴上安装有高准确度的圆光栅的方式,才能提供符合当前物质结构分析的要求。该文具体给出了圆光栅的准确度要求。
Influence of mechanical manufacturing errors in diffraction instruments on the fit confidence limit
[Objective]The X-ray polycrystalline diffraction(XRPD)analysis method is pivotal in multiple disciplines,including physics,chemistry,and materials science.This technique is frequently used to study material structure.More specifically,the full spectrum structure fitting method,known as Rietveld,is often used to obtain the fine structure of materials and substances on the atomic scale.This method combines the study of material properties to uncover and improve the relationship between structure and properties to develop and obtain better materials.A key factor in these analyses is the accuracy and credibility of structural and lattice parameter analyses.Several factors can affect the accuracy of angle measurement.One of the most significant is the inherent error of the angle measuring instrument,which is primarily affected by mechanical manufacturing errors.These errors,often caused by issues with the worm gear system,cannot be overlooked.A typical X-ray diffractometer uses a worm gear system to rotate the X-ray tube,sample stage,and detector.The systematic error of the worm gear used in the diffractometer is random,and the error at every angle of each diffractometer differs.Unfortunately,these errors cannot be corrected using software and standards owing to their randomness.[Methods]In our study,we calculated and analyzed the reliability of the XRPD full spectrum fitting results.We focused on the impact of manufacturing errors in the worm gear system,using simulation calculation methods to determine their effect.Simply put,let us take Si as an example.We design a set of profile functions that vary with angle according to the actual conditions.We then calculate the theoretical spectrum without mechanical error(20°-120°)with a step distance of 0.01°.As per the requirements of the peak function,the integration intensity ratio of each peak matches the relative intensity number on the PDF 27-1402 card.Then,we set the precision of mechanical error to 0.002,0.004,0.006,and so on until 0.020°.For each given precision,we calculate the theoretical calculation spectrum of the angle error of each peak using the same profile function.Finally,we fit multiple spectra with random errors to the error-free theoretical spectra and obtain the fitting error factor.[Results]We find the maximum,minimum,and average values of the fitting error factors corresponding to the given accuracy calculated multiple times.A detailed analysis of the data reveals that for a theta-theta diffractometer,the angle accuracy of mechanical manufacturing must reach at least±0.003° for the fitting results to be deemed reliable.If it is a theta-2 theta diffractometer,the required accuracy needs to be halved.In theory,no program,including all algorithms for fitting full spectrum structures,can reduce the limitation of this error.[Conclusions]Therefore,only a diffractometer with a high-accuracy circular grating installed directly on the diffractometer axis can meet the requirements of current material structure analysis.Given the inevitable presence of other errors,the accuracy index of the circular grating installed on the diffractometer used should surpass the angle accuracy required for the analysis.

X-ray diffractionmechanical manufacturing errorfit confidence

陶琨、徐晓明、丁琳雪

展开 >

清华大学材料科学与工程研究院中心实验室,北京 100084

X射线衍射 机械制造误差 拟合可信度

2024

实验技术与管理
清华大学

实验技术与管理

CSTPCD北大核心
影响因子:1.651
ISSN:1002-4956
年,卷(期):2024.41(2)
  • 18