首页|基于数据流架构的雷达信号调制方式识别加速

基于数据流架构的雷达信号调制方式识别加速

扫码查看
在雷达电子战中,快速并准确地识别敌方雷达信号调制技术对于获得战术优势至关重要,而传统依赖于图形处理单元(graphics processing unit,GPU)的识别方法难以满足此应用场景的低延迟要求。为此,该文设计了一种基于数据流架构(dataflow architecture,DF)的雷达信号调制方式识别加速系统。该系统通过对卷积神经网络权值进行二值化来减少模型参数,便于将算法部署到现场可编程门阵列(field-programmable gate array,FPGA),同时采用数据流架构加快雷达信号调制方式的识别过程。实验结果表明,在确保整体识别准确率的前提下,该加速系统的推理速度相比i7-11800H CPU提升 44。43 倍,相比RTX 3050Ti GPU提升 2。59 倍,系统功耗仅为 1。724 W。
Accelerating radar signal modulation recognition based on data flow architecture
[Objective]In the highly specialized domain of radar electronic warfare,where every millisecond of delay can mean the difference between detecting and countering enemy radar systems effectively or missing the opportunity entirely,the ability to swiftly and accurately identify the modulation techniques of adversarial radar signals is critically imperative for securing a tactical advantage.Traditional methodologies often rely on graphics processing units(GPU)for signal recognition and have been proven inadequate in meeting the low-latency requirements of such application scenarios.To address this pivotal challenge,this paper introduces a novel acceleration system for radar signal modulation recognition that leverages a dataflow architecture(DF)to overcome the limitations in low-latency signal processing.This system integrates a binarized convolutional neural network(CNN)structure optimized for deployment on field-programmable gate arrays(FPGA),representing a major shift from conventional approaches.[Methods]Our methodological framework centers on developing a binarized CNN architecture that drastically reduces the computational overhead traditionally associated with signal recognition tasks.By quantizing the weights of the CNN to binary values,the system significantly diminishes resource requirements,enabling a more streamlined and energy-efficient operation.The adoption of a dataflow architecture further enhances this approach by simplifying the multiplication operations within the network to mere additions or subtractions.This design choice ensures efficient data movement through the processing units,minimizing idle times and maximizing system throughput,a critical factor in achieving high-speed data processing and significant reductions in power consumption.Furthermore,this framework facilitates parallel processing,thereby enhancing the system's data throughput efficiency.[Results]Simulation experiments conducted to assess the performance of the proposed acceleration system in recognizing eight different types of radar signal modulations reveal compelling findings.The experiments showcased the system's capabilities when benchmarked against classic neural network models,such as ResNet50 and MobileNetV3-Large.Notably,the binarized CNN maintained comparable recognition accuracy levels at higher signal-to-noise ratios(SNRs),satisfactorily meeting the general SNR requirements.This outcome is particularly noteworthy as it underscores the system's ability to maintain overall recognition accuracy without compromising processing speed or energy efficiency.Specifically,the acceleration system exhibited an extraordinary increase in inference speed,showing a remarkable 44.43 fold improvement over the i7-11800H CPU and a 2.59 fold enhancement compared to the RTX 3050Ti GPU.Moreover,this was achieved while keeping the system's power consumption to a minimal 1.724 W.[Conclusions]The research conclusively shows that the strategic simplification of network weights does not impede the system's ability to recognize radar signals accurately.Rather,this simplification significantly accelerates processing speed,thereby enhancing the system's practical applicability in the dynamic contexts of electronic warfare.This study enriches the dialogue on improving radar signal recognition methods and introduces a viable and efficient solution that is pivotal in enhancing tactical response capabilities in electronic warfare.The implications of this research are manifold,opening avenues for further investigation into optimizing signal processing systems for defense applications.By establishing a solid framework for the rapid and accurate identification of radar signal modulations,this research sets a new benchmark for future advancements in electronic warfare technology.It offers a valuable reference for subsequent studies in this critical field.

modulation type recognitiondeep learningdataflow architecturebinarized neural networkhardware deployment

黄湘松、王振、潘大鹏

展开 >

哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001

哈尔滨工程大学 先进船舶通信与信息技术工业和信息化部重点实验室,黑龙江 哈尔滨 150001

调制方式识别 深度学习 数据流架构 二值化神经网络 硬件部署

黑龙江省教育科学规划课题哈尔滨工程大学校级本科教育教学改革研究项目哈尔滨工程大学校级本科教育教学改革研究项目

GJC1319018JG2019B24JG2019B86

2024

实验技术与管理
清华大学

实验技术与管理

CSTPCD北大核心
影响因子:1.651
ISSN:1002-4956
年,卷(期):2024.41(5)