首页|低温等离子体强化氨分解制氢实验装置设计与应用

低温等离子体强化氨分解制氢实验装置设计与应用

扫码查看
氨是未来船舶的无碳燃料之一,但其高燃点、低火焰扩散速率等特性会严重影响氨燃料发动机的点火及燃烧特性,通常需要加入氢等高活性引燃燃料进行混合燃烧。为此,该文设计了基于催化技术和低温等离子体技术交叉结合的综合性实验平台,平台以氨标准气体为反应物,可开展不同工况下氨分解制氢的教学与探索性实验。同时,该平台涵盖船舶主推进动力装置、物理化学、等离子体科学等基础学科教学内容,有助于培养学生的学科交叉意识,使其了解船舶柴油机节能减碳前沿性技术。
Design and application of an experiment platform for hydrogen production by low-temperature plasma-enhanced ammonia decomposition
[Objective]Ammonia emerges as a pivotal,carbon-free fuel for future maritime transportation.However,its adoption faces challenges owing to ammonia's high ignition temperature and low flame diffusion rate.These characteristics complicate the ignition and combustion processes in ammonia-fueled engines,typically necessitating the introduction of reactive fuels like hydrogen to facilitate engine ignition.[Methods]To address these challenges,this study introduces an innovative experimental platform for NH3 decomposition.This platform combines catalysis with low-temperature plasma technologies.Specifically,our paper investigates the effects of different packing materials and variations in discharge power on the NH3 decomposition within a packed-bed dielectric barrier discharge(DBD)plasma reactor operating at ambient conditions.[Results]As the discharge power increases,we observe a corresponding rise in the reactor's effective capacitance value,from 72.4 pF to 97.2 pF.This facilitates the generation of additional discharge channels and free electrons within the packed-bed DBD plasma reactor.Electron collision with NH3 molecules enhances the production of reactive species in the reactor.These atoms and molecules are more susceptible to dissociation owing to their excited state.In addition,the high discharge powers lead to a high"electrical heat"in the rector,which further activates the packing materials.The integration of plasma technology and packing materials strengthens the discharge characteristics of the packed-bed DBD plasma reactor,thereby boosting NH3 decomposition performance.When comparing non-packed reactors with those packed with ZSM-5,ZSM-35,and ZSM-23 materials,the NH3 decomposition performance increases from 59.2%to 71.7%,73.2%,and 77.3%,respectively,at a discharge power of 16 W.Moreover,energy efficiency increases from 208.1 mmol/kWh in the non-packed reactor to 1359.3 mmol/kWh using ZSM-23 packing material,marking an improvement of approximately 653.2%.The active sites on the surface and within the pores of the packing materials provide a larger number of reaction sites for gas-phase molecules.The special pore structure of ZSM-23 materials facilitates the diffusion of gas-phase molecules,promoting a higher frequency of multiphase reactions per unit time.In addition,this study investigates the effect of various process parameters on the NH3 decomposition performance using the packed-bed DBD plasma reactor at a discharge power of 16 W.The NH3 decomposition performance starts to decrease as the gas flow rate increases,with the lowest NH3 efficiency of 47.9%recorded at a gas flow rate of 300 mL/min.When the NH3 concentration is 0.4%,0.7%and 1.0%,the NH3 decomposition performance is 73.4%,59.2%and 51.2%,respectively.This variation in performance can be attributed to the number of gas particles in the discharge region.Specifically,an increase in the number of NH3 molecules flowing through the discharge region per unit time elevates the frequency of collisions between electrons and NH3 molecules,which in turn enhances the dissociation of these molecules.[Conclusions]The platform is designed to utilize ammonia as a reactant,facilitating teaching and exploratory experiments on NH3 decomposition and hydrogen production under different working conditions.Simultaneously,the teaching component covers fundamental disciplines such as ship main propulsion power plants,physical chemistry,and plasma science.This integrated approach aims to foster students'interdisciplinary knowledge,deepening their understanding of cutting-edge technologies for energy conservation and carbon reduction in marine diesel engines.

non-thermal plasmaNH3 decompositionhydrogen productionmarine diesel engine

何哲科、竺新波、沈国金、洪瑜、杨鑫、陈耿、吴叶平

展开 >

宁波大学 海运学院,浙江 宁波 315832

宁波诺丁汉大学 新材料研究所,浙江 宁波 315042

等离子体 氨分解 制氢 船舶柴油机

国家自然科学基金项目教育部高等学校交通运输类专业教学指导委员会航海技术教学指导分委员会教育教学改革研究项目宁波大学教学研究项目

523713262022jzw005JYXM2024015

2024

实验技术与管理
清华大学

实验技术与管理

CSTPCD北大核心
影响因子:1.651
ISSN:1002-4956
年,卷(期):2024.41(6)
  • 21