首页|基于改进时序网络的钻进参数可解释实时预测

基于改进时序网络的钻进参数可解释实时预测

扫码查看
实时准确预测钻进参数变化趋势对现场钻井作业具有重要参考价值.针对智能模型在现场作业应用中面临的钻进参数可获取性限制,提出了一种基于注意力时域卷积网络(AT-TCN)的钻进参数超前预测方法.该方法不仅考虑了录井曲线随深度变化的趋势和自相关性,同时嵌入高拓展性的注意力机制模块,使模型更好地捕捉钻进参数的动态变化.利用现场钻井数据集测试,评估了模型在预测4 种关键钻进参数(扭矩、立管压力、钻井液当量密度和机械钻速)方面的有效性和准确性.研究结果表明:AT-TCN预测当量密度的准确率最高达到 99%,且在模型精度和计算效率上,均优于其他4 种深度学习模型,能够有效捕捉钻进参数的变化趋势.AT-TCN还提供模型的双重可解释性,可从时序和特征维度方面反映输入序列对预测结果的影响.研究结果有望为钻井作业的安全性、高效性作出重要贡献,具有较强的落地应用价值.
Interpretable Real-Time Prediction of Drilling Parameters Based on Improved Sequential Network
Real-time accurate prediction on variation trend of drilling parameters has important reference value for field drilling operations.In order to solve the limitations of drilling parameter availability faced by intelligent model in field operation,a drilling parameter prediction method based on Attention-Temporal Convolutional Net-work(AT-TCN)was proposed.This method not only takes into account the variation trend of mud logging curve with depth and its autocorrelation,but also embeds a highly expansible attention mechanism module,allowing the model to better capture the dynamic change of drilling parameters.Then,the field drilling data set was used to test and evaluate the effectiveness and accuracy of the model in predicting four key drilling parameters such as torque,standpipe pressure,equivalent density of drilling fluid and ROP.The research results show that AT-TCN can pre-dict equivalent density with an accuracy up to 99%.It is superior to the other four deep learning models in terms of model accuracy and computational efficiency,and it can effectively capture the variation trend of drilling parame-ters.AT-TCN also provides dual interpretability of the model,and reflects the influence of input sequence on pre-diction results from both sequential and characteristic dimensions.The research results are expected to make impor-tant contributions to the safety and efficiency of drilling operations,and have strong practical application value.

drilling parameterintelligent modeladvance predictionattention mechanismTCNinter-pretability

张瑞、祝兆鹏、李大钰、宋先知、李根生、张诚恺、朱硕

展开 >

中国石油大学 (北京) 信息科学与工程学院/人工智能学院

中国石油大学 (北京) 机械与储运工程学院

中国石油大学 (北京) 高端油气装备智能设计与制造研究中心

中石油江汉机械研究所有限公司

展开 >

钻进参数 智能模型 超前预测 注意力机制 时序卷积网络 可解释性

国家杰出青年科学基金国家重点研发计划"变革性技术关键科学问题"专项中国石油-中国石油大学(北京)战略合作科技专项

521254012019YFA0708300ZLZX2020-03

2024

石油机械
中国石油天然气集团公司装备制造分公司 中国石油学会石油工程专业委员会 江汉机械研究所 江汉石油管理局

石油机械

CSTPCD北大核心
影响因子:0.737
ISSN:1001-4578
年,卷(期):2024.52(4)
  • 27