首页|基于双目视觉的吊卡识别及其方位检测方法

基于双目视觉的吊卡识别及其方位检测方法

扫码查看
针对钻井自动化中的吊卡方位需要人工参与,存在识别定位缓慢和准确性差等问题,建立了基于双目视觉的吊卡自动识别和方位检测系统.通过搭建双目相机视觉检测系统,对获取的吊卡图像进行标定、立体校正和立体匹配,进而获取吊卡图像的深度图.在原YOLOv5s目标检测算法的主干网络中引入卷积注意力机制模块,将要识别的目标即吊卡图像进行增强,进一步提高吊卡的识别准确率,结合深度图计算出吊卡中心位置相对机械手的距离和偏转角度,从而实现自动送管.通过在钻井平台的试验,验证了吊卡识别和检测方法的有效性.所得结论可为钻井平台自动化程度的进一步提高提供技术借鉴.
Elevator Recognition and Orientation Detection Method Based on Binocular Vision
In order to solve the problems such as manual involvement,slow recognition and poor accuracy in elevator positioning in drilling automation,a binocular vision based elevator automatic recognition and orientation detection system was built.By means of building a binocular camera visual detection system,the obtained elevator images were calibrated,stereo corrected,and stereo matched to obtain depth maps of them.A convolutional atten-tion mechanism module was introduced into the backbone network of the original YOLOv5s target detection algo-rithm to strengthen the target to be recognized,i.e.,the elevator image,further improve the recognition accuracy of elevator,and figure out the distance and deflection angle of the elevator center position relative to the manipula-tor combined with depth maps,thus achieving automatic pipe feeding.The effectiveness of elevator recognition and detection method was verified through tests on drilling platforms.The conclusions provide technical reference for further improving the automation level of drilling platforms.

elevator recognitionorientation detectionbinocular cameraYOLOv5s algorithmconvolu-tional attention mechanism moduleexperimental verification

李进付

展开 >

中石化胜利石油工程有限公司钻井工艺研究院

吊卡识别 方位检测 双目相机 YOLOv5s算法 卷积注意力机制模块 试验验证

国家重点研发计划

2022YFC2806404

2024

石油机械
中国石油天然气集团公司装备制造分公司 中国石油学会石油工程专业委员会 江汉机械研究所 江汉石油管理局

石油机械

CSTPCD北大核心
影响因子:0.737
ISSN:1001-4578
年,卷(期):2024.52(4)
  • 17