首页|联合残差域自适应的变工况轴承故障诊断方法

联合残差域自适应的变工况轴承故障诊断方法

扫码查看
滚动轴承由于实际工况变化造成故障数据特征分布不同,出现跨领域问题,传统以数据独立同分布为前提的故障诊断方法难以解决该问题.为此,设计并搭建了聚合残差网络,以残差连接和分组卷积式的独特网络结构实现故障敏感特征深度挖掘.提出一种联合残差域自适应的故障诊断方法,该方法通过最优广义S变换构建聚合残差网络提取图像的可迁移特征,最后以联合最大均值差异自适应地减小数据间的联合分布差异,实现变工况轴承的故障诊断.对 3 种工况下的滚动轴承进行了6 组迁移试验,试验结果表明:联合残差域自适应方法故障诊断准确率达到了98.29%,相比于联合分布自适应法JDA和联合分布自适应+卷积神经网络法JDA+CNN,分别提升了21.0 和5.1 个百分点.研究结果可为变工况滚动轴承的故障诊断提供技术参考.
Joint ResNeXt Domain Adaptation Diagnosis Method for BearingFault Under Variable Working Conditions
Rolling bearing has cross-domain problem due to different distribution of fault data features caused by changes in actual working conditions,which is difficult to be solved by the conventional fault diagnosis method that takes the independent co-distribution of data as the prerequisite.Therefore,a ResNeXt was designed and built to achieve deep mining of fault sensitive features through a unique network structure of residual connection and grouped convolution.Then,a Joint ResNeXt Domain Adaptation fault diagnosis method was proposed,which uses the Optimal Generalized S-Transform to build a ResNeXt to extract the transferable features of images.Finally,the Joint Maximum Mean Discrepancy was used to adaptively reduce the joint distribution difference among data,and achieve fault diagnosis of bearing under variable operating conditions.Moreover,6 sets of migration tests were car-ried out on rolling bearing under 3 kinds of working conditions.The test results show that the fault diagnosis accura-cy of the Joint ResNeXt Domain Adaptation method reaches 98.29%,which is improved by 21.0%and 5.1%compared to the joint distribution adaptation method(JDA)and the joint distribution adaptation + convolutional neural network method(JDA+CNN)respectively.The study results provide technical reference for the fault diag-nosis of rolling bearing under variable working conditions.

rolling bearingfault diagnosisResNeXtjoint ResNeXt domain adaptationfault diagnosis accuracy

骆世龙、段礼祥、张俊玲

展开 >

中国石油大学 (北京) 安全与海洋工程学院

应急管理部油气生产安全与应急技术重点实验室

中国石油大学 (北京) 机械与储运工程学院

滚动轴承 故障诊断 聚合残差网络 联合残差域自适应 故障诊断准确率

中国石油天然气集团有限公司战略合作科技专项

ZLZX2020-05-02

2024

石油机械
中国石油天然气集团公司装备制造分公司 中国石油学会石油工程专业委员会 江汉机械研究所 江汉石油管理局

石油机械

CSTPCD北大核心
影响因子:0.737
ISSN:1001-4578
年,卷(期):2024.52(4)
  • 20