Working Characteristics of Mechanical Composite Impactor
Conventional impactor works with hydraulic impulse,which may induce erosion to impact the working life of the impactor.To this end,a mechanical lifting and disc spring energy storage impact method was proposed and a mechanical composite impactor was designed.The mechanism was verified by an example model,and then its compression energy storage,torsional impact,and axial impact characteristics were analyzed by com-bining theoretical calculation and numerical analysis.The results show that,under the axial compression of 10 to 100 MPa,the growth rate of the total deformation of the disc spring group with the number of 11 is about 2.66 times of that with the number of 5,but the characteristics of their equivalent stress curves are similar.The torsional impact is proportional to the radial impact force,the total velocity and total deformation of the lower shaft end face are linearly correlated with the impact force,and the total velocity of the end face with 4 pairs of torsional impact is about 2.54 times that with 2 pairs of torsional impact.When the lifting seat with pendulum trajectory moves at 30 r/min over 12 mm stroke,the maximum impact velocity is 0.2 m/s and the maximum impact acceleration is 5.6 m/s2.A proper stroke should be selected to prevent a too high contract stress in the impact process.The impact characteristics can be improved by increasing the pairs of torsion impact and the number of combined disc springs.The research results provide a theoretical support for the design of composite impactor.