首页|基于GA-BP的往复式压缩机状态监测与预测性维护

基于GA-BP的往复式压缩机状态监测与预测性维护

扫码查看
针对某增压站现有压缩机状态监控系统识别故障信号困难,故障发生前未能提前预警的问题,开发了面向预知维修的往复式压缩机状态监测与预测系统,建立一套完整的软件及硬件体系.气阀作为往复式压缩机的重要运动部件,其状态监测的测点位于阀盖外表面中心处,以气阀状态监测为例,建立了气阀盖振动力学模型.综合运用时域、频域和小波特征提取方法进行振动信号分析,得到正常状态和故障状态的信号特征,提取状态指标.运用遗传算法优化神经网络模型,建立基于GA-BP的往复式压缩机振动趋势预测模型,试验测得模型的预测误差小于 0.04.现场应用结果表明,该系统可实现全天候实时在线监测与预测,实现预知维修,减少工作人员的维保压力,提高机组运行安全性和效率,节省运维成本.
Status Monitoring and Predictive Maintenance of Reciprocating Compressor Based on GA-BP
At a booster station,the existing compressor status monitoring system cannot effectively identify fault signals,but fail to provide warning before faults occur.To solve this problem,a reciprocating compressor sta-tus monitoring and prediction system for predictive maintenance was developed,and a complete software and hard-ware system was built.Air valve is an important moving part of reciprocating compressor,and the measuring point for its status monitoring is located at the center of the outer surface of the valve cap.Taking the monitoring of the air valve status for example,a vibration mechanics model of the air valve cap was built.Then,the time domain,frequency domain and wavelet feature extraction methods were comprehensively used to conduct vibration signal a-nalysis,obtaining the signal features of normal and fault states,and extracting the state indicators.Finally,the genetic algorithm was used to optimize the neural network model and build a GA-BP based reciprocating compressor vibration trend prediction model.The test results show that the prediction error of the model is less than 0.04.Field application demonstrates that the system achieves all-weather real-time online monitoring and prediction as well as predictive maintenance,reduces maintenance pressure of working personnel,improves the safety and efficiency of unit operation,and saves operation and maintenance costs.

reciprocating compressorGA-BPstatus monitoringfault warningpredictive maintenance

徐梦卓、刘航铭、易先中、周元华、万继方、陈霖、曹泽宇

展开 >

荆州职业技术学院智能制造学院

湖北省地质局第七地质大队

长江大学机械工程学院

中能建数字科技集团有限公司

中国石油集团川庆钻探工程有限公司长庆钻井总公司

山东省微远科技有限公司

展开 >

往复式压缩机 GA-BP 状态监测 故障预警 预测性维护

国家自然科学基金项目&&

51974035U1762214

2024

石油机械
中国石油天然气集团公司装备制造分公司 中国石油学会石油工程专业委员会 江汉机械研究所 江汉石油管理局

石油机械

CSTPCD北大核心
影响因子:0.737
ISSN:1001-4578
年,卷(期):2024.52(8)
  • 10