首页|基于多尺度残差注意力域适应的轴承故障诊断

基于多尺度残差注意力域适应的轴承故障诊断

扫码查看
针对滚动轴承待监测样本在跨机器任务中诊断困难的问题,提出一种基于多尺度残差注意力域适应的滚动轴承故障诊断方法.该方法将滚动轴承振动信号直接作为多尺度注意力残差网络模块的输入,为更好提取源域与目标域的共同特征,该模块引入多尺度卷积提取特征信息、注意力机制的压缩激励网络解决数据差异性与残差网络的跨层连接,域自适应部分采用局部最大均值差异度量准则,并选择滚动轴承公开故障数据集进行对比与消融试验.试验结果表明:提出的多尺度残差注意力域适应的滚动轴承故障诊断方法在跨机器任务下平均识别精度达到 99.1%,相比于其他方法具有较好的泛化性能.所得结论可为滚动轴承故障监测与诊断提供理论依据.
Bearing Fault Diagnosis Based on Multiscale Residual Attention Domain Adaptation
Rolling bearing samples to be monitored are difficult to diagnose in cross machine tasks.To solve this problem,a fault diagnosis method for rolling bearing based on multiscale residual attention domain adaptation was proposed.This method directly takes the vibration signal of rolling bearings as the input of the multiscale atten-tion residual network module.In order to effectively extract the shared characters of source domain and target do-main,this module introduces multiscale convolution to extract feature information,and a compressed excitation net-work with attention mechanism to solve the problem of data differences and cross layer connection of residual net-works.The domain adaptation part adopts the local maximum mean difference measurement criterion,and selects the publicly available fault dataset of rolling bearings to conduct comparison and ablation tests.The test results show that the rolling bearing fault diagnosis method based on multiscale residual attention domain adaptation a-chieves an average recognition accuracy of 99.1%in cross machine tasks,and has better generalization perform-ance compared to other methods.The study conclusions provide a theoretical basis for the monitoring and diagnosis of rolling bearing faults.

rolling bearingfault diagnosis modeltransfer learningmultiscale convolution kernelattention residual block

唐友福、姜佩辰、李澳、丁涵、刘瑞峰

展开 >

东北石油大学机械科学与工程学院

滚动轴承 故障诊断模型 迁移学习 多尺度卷积核 注意力残差块

东北石油大学青年科学基金项目

2018QNL-28

2024

石油机械
中国石油天然气集团公司装备制造分公司 中国石油学会石油工程专业委员会 江汉机械研究所 江汉石油管理局

石油机械

CSTPCD北大核心
影响因子:0.737
ISSN:1001-4578
年,卷(期):2024.52(10)
  • 8