首页|基于改进动态偏最小二乘法故障检测方法

基于改进动态偏最小二乘法故障检测方法

扫码查看
目的 针对滚动轴承早期故障的特征信号微弱,在实际运转中由于数据具有时序相关性,使得滚动轴承早期阶段的故障特征提取难度增大等问题,提出一种基于深度分解理论的改进动态偏最小二乘法(DeepDPLS)的滚动轴承早期故障检测方法.方法 首先选择时滞参数使原始数据矩阵形成动态增广矩阵,确定深度分解的阶数;再应用深度分解理论得到分解生成的各个子空间;最后用偏最小二乘法(PLS)计算各个子空间的统计量和控制限,通过将每一个子空间的统计量与其对应的控制限进行比较来判别系统是否发生故障.结果 提出的DeepDPLS与PLS及其相关方法相比,极大地提高了滚动轴承的早期故障检测率;与DeepPLS相比,在一阶分解时故障检测率可达到100%,建立的模型更加精确,能更早地检测出滚动轴承的早期故障.结论 笔者提出的基于DeepDPLS的检测方法对于滚动轴承的早期故障检测是可行、有效的.
Fault Detection Method Based on Improved Dynamic Partial Least Square Method
In order to solve the problem that the characteristic signals of incipient faults of rolling bearings are weak and that in actual industrial operation,the data often have temporal correlation,which makes it more difficult to extract fault features in the incipient stages of rolling bearings,an improved dynamic partial least squares method based on the theory of depth decomposition for incipient faults detection of rolling bearings is proposed.Firstly,the time delay parameter is selected to form a dynamic augmentation matrix of the original data matrix,secondly,the order of deep decomposition is determined,then the deep decomposition theory is applied to obtain each subspace generated by the decomposition.Finally,the partial least squares(PLS)method is used to calculate the statistics and control limits of each subspace,and then compare the statistic of each subspace with its corresponding control limit to determine whether the system has a fault.The proposed DeepDPLS method greatly improves the incipient faults detection rate of rolling bearings compared with PLS method and its related methods.The fault detection rate of the DeepDPLS method proposed reaches 100%in the first-order decomposition compared to the DeepPLS method,the established model is more accurate and can detect incipient faults of rolling bearings earlier.The DeepDPLS method proposed is feasible and effective for incipient faults detection of rolling bearings by experiment and simulation.

rolling bearingincipient faults detectionpartial least squares methodmulti-order decompositiondynamic characteristics

张珂、杨鹏宇、石怀涛、郭瑾

展开 >

沈阳建筑大学机械工程学院,辽宁沈阳 110168

沈阳工学院机械工程与自动化学院,辽宁抚顺 113122

滚动轴承 早期故障检测 偏最小二乘法 多阶分解 动态特性

国家自然科学基金辽宁省兴辽英才创新团队项目辽宁省科技计划

52175107XLYC20080162021JH4/10200009

2024

沈阳建筑大学学报(自然科学版)
沈阳建筑大学

沈阳建筑大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.697
ISSN:2095-1922
年,卷(期):2024.40(1)
  • 16