首页|基于GA-VMD分解与支持向量机的刀具故障诊断研究

基于GA-VMD分解与支持向量机的刀具故障诊断研究

扫码查看
目的 研究非平稳性振动信号的分解方法,提出一种基于遗传算法优化后的变分模态分解方法(GA-VMD),提高刀具故障识别准确率.方法 以样本熵为目标函数值,利用遗传算法对样本熵进行迭代计算,得到变分模态分解的最佳分解层数k和惩罚系数α;在此基础上,对刀具振动信号进行分解,并提取刀具故障特征,再利用近邻成分分析(NCA)对故障特征进行筛选,得到与刀具故障状态相关性较强的特征;最后将筛选后的故障特征输入到PSO-SVM分类模型中进行刀具故障诊断.结果 相较于PSO-VMD分解方法,在相同迭代次数下,GA-VMD分解方法对于刀具故障分类的准确率由92%提升至97%.结论 优化后的VMD分解方法降噪效果明显,能提取较好的刀具故障特征,刀具故障识别准确率有了明显提高,为信号分解层数以及刀具故障诊断提供了理论基础.
Research on Tool Fault Diagnosis Based on GA-VMD Decomposition and Support Vector Machine
In order to improve the accuracy of tool fault identification,a variational modal decomposition(VMD)method optimized by genetic algorithm(GA)is proposed by studying the decomposition method of non-stationary vibration signals.The method takes sample entropy as the objective function value,and uses genetic algorithm to iteratively calculate the sample entropy to obtain the optimal decomposition level k and penalty coefficient for variational modal decomposition α.On this basis,the tool vibration signal was decomposed and tool fault features were extracted.Next,the fault features were screened using Nearest Neighbor Component Analysis(NCA)to obtain features with strong correlation with the tool fault status.Finally,the screened fault features were input into the PSO-SVM classification model for tool fault diagnosis.Conclusion:The optimized VMD decomposition method has significant noise reduction effect and can extract good tool fault features.The accuracy of tool fault recognition has been significantly improved,providing a theoretical basis for signal decomposition layers and tool fault diagnosis.

VMDfeature extractionsupport vector machinefault diagnosis

赵德宏、李永利

展开 >

沈阳建筑大学高档石材数控加工装备与技术国家地方联合工程实验室,辽宁 沈阳 110168

VMD 特征提取 支持向量机 故障诊断

国家自然科学基金青年项目国家自然科学基金项目

5207534851705341

2024

沈阳建筑大学学报(自然科学版)
沈阳建筑大学

沈阳建筑大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.697
ISSN:2095-1922
年,卷(期):2024.40(2)
  • 6