首页|基于机器学习的圆钢管再生混凝土长柱偏压承载力计算方法

基于机器学习的圆钢管再生混凝土长柱偏压承载力计算方法

扫码查看
目的 研究圆钢管再生混凝土长柱偏压承载力与各设计变量之间的映射关系,建立高精度的预测模型,并对机器学习模型进行可解释性分析.方法 建立包含155 个样本的数据库,并对机器学习模型所选输入变量进行VIF检验;采用RBFNN、RF、LightGBM及XGBoost算法建立偏压承载力预测模型,基于判定系数R2、均方根误差RMSE及平均绝对误差MAE,选取最适用于圆钢管再生混凝土长柱偏压承载力的预测模型;采用SHAP法解释输入变量对承载力的贡献程度及各输入变量的影响机理.结果 输入变量间的VIF系数小于5,变量间不存在明显的多重共线性;构建的XGBoost算法为最佳预测模型,模型的 R2、RMSE 及 MAE 分别为 0.998、16.397、7.76.结论 XGBoost模型能够实现圆钢管再生混凝土长柱偏压承载力的高精度预测;偏心率、试件直径是影响其承载力的关键变量;圆钢管再生混凝土长柱偏压承载力随着再生骨料取代率的增加而降低.
Calculating Method of Eccentric Bearing Capacity of Recycled Aggregate Concrete Filled Steel Tubular Slender Columns Based on Machine Learning
To study the mapping relationship between the eccentric compression bearing capacity of recycled aggregate concrete filled steel tubular slender columns and each design variable,and to establish a high-precision prediction model,and to analyze the interpretability of the machine learning model,a database containing 155 samples was established,and the VIF test was performed on the selected input variables of the machine learning model.The RBFNN,RF,LightGBM and XGBoost algorithms were used to establish the eccentric compression bearing capacity prediction model,and the most suitable model was selected based on the coefficient of determination(R2),the root-mean-square error(RMSE),and the mean absolute error(MAE).Using the SHAP method to explain the contribution of input variables to the output bearing capacity and the mechanisms of each input variable,the VIF coefficient between input variables was found to be less than 5,indicating no obvious multicollinearity between variables.Through comparative analysis,the XGBoost algorithm demonstrated superior performance with an R2 of 0.998,RMSE of 16.397,and MAE of 7.76,enabling high-precision prediction of eccentric compression bearing capacity.The eccentricity and diameter of the specimen were identified as key variables affecting capacity.With the increase in recycled aggregate substitution rate,the eccentric compression bearing capacity of circular steel tubular recycled aggregate concrete slender columns decrease.

recycled aggregate concreteeccentric bearing slender columnsmachine learningSHAPbearing capacity prediction

路林翰、李俊鹏、刘进隆、王仕奇、张玉琢

展开 >

沈阳建筑大学管理学院,辽宁 沈阳 110168

沈阳建筑大学土木工程学院,辽宁 沈阳 110168

东南大学土木工程学院,江苏 南京 211189

浙江大学建筑工程学院,浙江 杭州 310058

展开 >

再生混凝土 偏压长柱 机器学习 SHAP 承载力预测

国家自然科学基金项目辽宁省教育厅基本科研项目山东省重点研发计划科技示范工程项目

51808351LJKMZ202209272021SFGC0903

2024

沈阳建筑大学学报(自然科学版)
沈阳建筑大学

沈阳建筑大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.697
ISSN:2095-1922
年,卷(期):2024.40(5)