首页|基于PCC-LPSO-BP的油气管道缺陷分类识别研究

基于PCC-LPSO-BP的油气管道缺陷分类识别研究

扫码查看
为准确识别油气管道的缺陷类型,分析缺陷漏磁信号特征对识别精度的影响,建立了基于PCC-LPSO-BP的油气管道缺陷识别模型.采用皮尔逊相关系数法(PCC)分析了缺陷漏磁信号特征量与缺陷尺寸间的相关程度,建立了混沌映射和莱维飞行改进的粒子群优化后的BP神经网络识别模型即LPSO-BP模型,采用评价指标综合比较了模型的识别效果,分析了该识别模型对各缺陷类型的识别精度以及各特征量对识别结果的影响.研究结果表明:LPSO-BP模型相较于BP模型识别精度提高了 7.47%,且在现有的数据范围内对表面剥落和裂纹的识别率达到了 100%.研究结果对油气管道缺陷识别量化具有一定的参考价值.
Research on Classification and Identification of Oil and Gas Pipeline Defects Based on PCC-LPSO-BP
In order to accurately identify the defect type of oil and gas pipeline and analyze the influence of the defect magnetic flux leakage signal characteristics on the identification accuracy,and the oil and gas pipeline defect identification model based on PCC-LPSO-BP was established.The Pearson correlation coefficient(PCC)method was used to analyze the degree of correlation between the characteristics of the defect magnetic flux leakage signal and the defect size,the BP neural network detection model(LPSO-BP model)optimized by particle swarm optimization based on chaos mapping and Levy flight improvement was established,the detection performance of the model was comprehensively compared by using the evaluation index,the detection accuracy of the model for each defect type and the influence of each characteristic on the detection result were analyzed.The results show that the recognition accuracy of LPSO-BP model is increased by 7.47%compared with BP model,and the recognition rate of surface spalling and cracks reaches 100%within the existing data range.The research results have a certain reference value for the identification and quantification of oil and gas pipeline defects.

magnetic flux leakage signaldefect identificationpearson correlation coefficientLPSO-BP mode

黄书童、贾晓丽

展开 >

中国石油大学(北京)机械与储运工程学院,北京 102249

漏磁信号 缺陷识别 皮尔逊相关系数 LPSO-BP模型

国家自然科学基金国家自然科学基金中国石油大学(北京)自然科学基金

11872377114023092462020XKJS01

2024

石油矿场机械
兰州石油机械研究所 中国石油和石油化工设备工业协会

石油矿场机械

影响因子:0.57
ISSN:1001-3482
年,卷(期):2024.53(4)