首页|基于BP神经网络算法的高模量混合料HMM-13级配优化设计研究

基于BP神经网络算法的高模量混合料HMM-13级配优化设计研究

扫码查看
空隙率是高模量混合料HMM-13配合比设计中重要指标.通过成型不同配合比条件下的高模量混合料旋转压实试件,测试高模量混合料的空隙率,以关键筛孔尺寸为13.2 mm(K1)、4.75 mm(K2)、2.36 mm(K3)、0.075 mm(K4)的通过率及综合油石比(O/S)作为输入参数,空隙率(V)作为输出参数,采用双隐含层BP神经网络算法,建立了高模量混合料HMM-13体积指标预测模型,进行了关键筛孔通过率对旋转压实试件空隙率的敏感性研究.研究结果表明,建立的模型误差小于1%,泛化能力强,可用于高模量混合料体积指标的预测;当 90%<K1<93%,45%<K2<50%,25%<K3<34%,6.6%<K4<6.9%,O/S≥5.2%时,可满足混合料空隙率1.5%~2.5%要求.
Research on the Optimization Design of HMM-13 Grading for High Modulus Mixtures Based on BP Neural Network Algorithm
Voids Content is an important indicator in the mix design of high modulus mixture HMM-13.This article tests the porosity of high modulus mixtures by forming rotating compaction specimens under differ-ent mix ratio conditions.The key mesh sizes of 13.2 mm(K1),4.75 mm(K2),2.36 mm(K3),0.075 mm(K4)and the comprehensive oil stone ratio(O/S)are used as input parameters,and the voids(V)is used as output parameter.The double hidden layer BP neural network algorithm is used.A volume index prediction model for high modulus mixture HMM-13 was established,and the sensitivity of key sieve pass rate to the po-rosity of rotary compacted specimens was studied.The research results indicate that the established model has an error of less than 1%and strong generalization ability,which can be used for predicting the volume index of high modulus mixtures;When 90%<K1<93%,45%<K2<50%,25%<K3<34%,6.6%<K4<6.9%,and O/S ≥5.2%,the requirement of mixture porosity of 1.5%~2.5%can be met.

high modulus asphalt mixtureVoids contentkey sieveartificial neural network

吴林、张辉、赵梦龙、李庆祥

展开 >

苏州交投建设管理有限公司,苏州 215000

江苏中路工程技术研究院有限公司,南京 211806

高模量沥青混合料 空隙率 关键筛孔 人工神经网络

2024

石油沥青
中国石油化工集团公司齐鲁分公司胜利炼油厂

石油沥青

影响因子:0.365
ISSN:1006-7450
年,卷(期):2024.38(1)
  • 12