首页|BP神经网络的隧道沉降预测虚拟仿真实验教学

BP神经网络的隧道沉降预测虚拟仿真实验教学

扫码查看
随着人工智能技术的快速发展,传统土木工程课程迫切需要转型,其中虚拟仿真实验教学是提高高校智能建造教学质量的重要环节.借助Matlab仿真软件,搭建多层逆向传播(BP)神经网络预测模型,开展地铁盾构施工过程中地表沉降预测,分析不同输入量及隐含层数量等因素对预测性能的影响.仿真结果表明:对单隐含层神经网络而言,建议输入量为1,隐含层数量在1~6之间;对于双隐含层神经网络,建议输入量为5,第1、2层隐含层数量在1~3之间;所建单/多层BP神经网络能很好地预测沉降变化趋势,为智能建造课程的虚拟仿真实验教学提供借鉴.
Research on Virtual Simulation Experimental Teaching of Tunnel Subsidence Prediction Based on BP Neural Network
With the rapid development of artificial intelligence technology,traditional civil engineering courses urgently need to be transformed,and virtual simulation experimental teaching is an important part of improving the teaching quality of intelligent construction in universities.With the help of Matlab simulation software,a multilayer BP neural network prediction model is built to predict the ground settlement during the construction of subway shields,and analyze the influence of different input variables and the number of hidden layers on the prediction performance.The results show that for a single hidden layer neural network,it is recommended that if the input variable is 1,then the number of hidden layers should be 1 to 6;for a double hidden layer neural network,it is recommended that if the input variable is 5 then the number of hidden layers in the first and second layers should be 1 to 3.The established single/multi-lay er BP neural network can well predict the trend of settlement changes,and can provide a reference for virtual simulation experimental teaching in intelligent construction courses.

intelligent constructionvirtual simulationteaching reformsubway shield tunnelingsurface subsidenceBP neural network

丁杨、韩震、张小龙、张鸿乾、周双喜、饶军

展开 >

浙大城市学院土木工程系,杭州 310015

南京地铁运营有限责任公司,南京 210012

浙江大学建筑工程学院,杭州 310058

广州航海学院土木与工程管理学院,广州 510725

华东交通大学土木与建筑学院,南昌 330013

展开 >

智能建造 虚拟仿真 教学改革 地铁盾构 地表沉降 BP神经网络

国家自然科学基金浙江省教育科学规划课题浙江省教育厅科研项目

521630342023SCG222Y202248682

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(1)
  • 15