首页|基于无监督深度学习的图像拼接实验设计与实现

基于无监督深度学习的图像拼接实验设计与实现

扫码查看
在智能交通、虚拟现实和遥感监控等图像应用领域,通过图像拼接可将多个摄像头获取的图像进行宽视野整体呈现.针对当前数字图像处理和模式识别等电子信息类专业课程缺少图像拼接相关的教学案例以及大视差图像拼接时存在伪影、失真等问题,给出一种基于景深-彩色图像融合的无监督深度学习图像拼接方法.采用彩色图像对应的景深图进行图像融合,计算单应性变换获得粗略对齐的图像,以低分辨率分支和高分辨率对齐分支获得精细对齐的图像,使用通道注意力和扩张卷积提升拼接效果.在不同数据集及多个场景下测试了视差图像拼接的效果,验证了该方法在真实场景下进行大视差图像拼接及多摄像头图像拼接的有效性.
Experimental Design and Implementation of Image Stitching Based on Unsupervised Deep Learning
In the application fields of intelligent transportation,virtual reality and remote sensing monitoring,image stitching can present images obtained from multiple cameras.Aiming at the lack of teaching cases related to image stitching in electronic information courses such as digital image processing and pattern recognition,as well as the problems of artifacts and distortion in large parallax image stitching,an unsupervised deep learning image stitching method based on depth-color image fusion is proposed.The depth of field map corresponding to the color image is used to fuse images,the homography transformation is calculated to obtain the roughly aligned image,and the low resolution branch and high resolution branch are used to obtain the fine aligned images,and the channel attention and dilated convolution are used to improve the stitching effect.The effect of parallax image stitching is tested in different data sets and multiple scenes,and it is verified that the method can effectively complete large parallax image stitching and multiple pictures stitching in real scenes.

image stitchinghomography estimationunsupervised deep learningscene depth

孙彦景、王兴兴、云霄、张晓光、周玉

展开 >

中国矿业大学信息与控制工程学院,江苏徐州 221116

图像拼接 单应性估计 无监督深度学习 景深

江苏省高教学会评估委员会项目江苏省高教学会评估委员会项目中国矿业大学教学改革项目煤炭行业高等教育研究课题教育部产学合作协同育人项目

2021-C1542021-C1582021YB202021MXJG146220901616274011

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(1)
  • 16