首页|肌电信号控制的智能小车实验平台设计

肌电信号控制的智能小车实验平台设计

扫码查看
肌电信号是人体肌群在运动时产生的一种微弱信号,该信号蕴藏着与运动相关的控制信息源.提出了一种基于肌电信号的智能小车控制系统.该系统由肌电信号采集模块、无线传输模块、小车控制模块和显示模块等组成.整个系统分为主从两部分.主机采用STM32F103ZET6 微处理器对肌电信号进行多通道采集,提取所采集信号的特征值.将特征值分为测试集和训练集,并对不同手势信号贴上对应的标签,使用K最近邻(KNN)算法对测试集进行准确度分析以实现对不同手势的识别.识别结果通过无线传输模块发送给从机小车,小车接收到主机发送的内容后进行相应的动作.测试结果表明,所提出的方法在不同时间段信号采集的平均准确率可达91.14%以上,系统具有很好的鲁棒性.
Design of an Intelligent Car Experimental Platform Based on EMG Signal Control
The electromyography signal is a weak signal generated by human muscle groups during movement,it contains control information sources related to movement.An intelligent car system based on electromyographic signals is proposed in this article.The system consists of four modules i.e.,muscle electrical signal acquisition module,wireless transmission module,car control module,and display module.The entire system is divided into two parts of master and slave.The STM32F103ZET6 microprocessor is used as host to collect the multi-channel electromyography signals,and extract the feature values of the collected signals.Then,we divide the feature values into test sets and training sets,and label different gesture signals accordingly.The KNN algorithm is used to analyze the accuracy of the test set for different gesture recognition.The recognition results are sent to the slave car through the wireless transmission module,the car takes corresponding actions after receiving the signal sent by the host.The test results show that the average accuracy of the proposed method at different times can reach over 91.14%,and thereby the system has good robustness.

STM32F103ZET6 microprocessorEMG signal acquisitionKNN algorithmgesture recognition

韩团军、李蛟龙、黄朝军、卢进军

展开 >

陕西理工大学物理与电信工程学院,陕西汉中 723000

STM32F103ZET6微处理器 肌电信号采集 K最近邻算法 手势识别

国家自然科学基金陕西省科技厅研究项目陕西理工大学科研项目陕西省教育厅专项科研项目

619722392022GY-122SLGKYXM230818JK0154

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(2)
  • 16