首页|基于多传感器融合SLAM的ROS服务机器人研究

基于多传感器融合SLAM的ROS服务机器人研究

扫码查看
为提升自主导航精度,使用Jetson Nano控制器,采用同步定位与地图构建和路径规划算法,融合轮式里程计、激光雷达和惯性测量单元等多传感器信息,实现精确的单点和多点自主导航.采用机器人操作系统搭建自主导航框架,使用基于图优化的cartographer算法实现环境地图构建与机器人位姿估计,采用A*算法作为全局路径规划算法,同时利用基于g2o优化的TEB算法实现环境突变时的局部路径规划.实验结果表明,基于图优化的cartographer算法建图效果优于常见的基于粒子滤波的Gmapping算法.基于g2o优化的TEB算法可避免动态窗口算法在局部路径规划中机器人被挟持的情况,提升智能机器人地图构建和路径规划的准确性.
Research on ROS Service Robot Based on Multi-sensor Fusion SLAM
In order to improve the accuracy of autonomous navigation,Jetson Nano is used as the control platform,this research integrates simultaneous localization and mapping(SLAM)with path planning algorithms,amalgamating wheel odometry,LiDAR,and IMU sensor data to achieve accurate single and multi-point autonomous navigation.Firstly,ROS robot operating system is utilized to establish an autonomous navigation framework.The cartographer algorithm based on graph optimization is employed for environment map construction and robot pose estimation.Global path planning is conducted using the A* algorithm,while the g2o-optimized timed elastic band(TEB)algorithm is adopted for local path planning during abrupt environmental changes.Experimental findings demonstrate the superior mapping efficiency of the graph-based Cartographer algorithm compared to the commonly used particle filter-based Gmapping algorithm.Additionally,the g2o-optimized TEB algorithm effectively circumvents issues associated with robot entrapment during local path planning under the dynamic window approach(DWA),thus enhancing the precision of both intelligent robot mapping and path planning endeavors.

intelligent robotrobot operating system(ROS)simultaneous localization and mapping(SLAM)path planninglidar

蔡明珠、刘肖燕、唐志伟

展开 >

东华大学信息科学与技术学院,上海 201620

智能机器人 机器人操作系统 同步定位与地图构建 路径规划 激光雷达

国家自然科学基金上海高校本科重点教学改革项目(2023)

61903078沪教委高[2023]47号

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(2)
  • 15