首页|基于深度学习的鱼病防治APP教学实践系统设计

基于深度学习的鱼病防治APP教学实践系统设计

扫码查看
针对移动编程技术教学方案中缺少与人工智能技术相结合的实验教学内容问题,设计了一个以Android和YOLOv5s为核心技术的鱼病防治教学实践系统.基于成果导向教育理念,将理论知识与科研项目相结合,引入CDIO(conceive(构思)-design(设计)-implement(实现)-operate(运作))教学模式,以系统功能设计、深度学习开发环境搭建、鱼病数据集构建、YOLOv5s鱼病检测算法设计、项目部署与测试、项目答辩路演等为主要教学模块进行递进式实验教学.实践表明,该系统充分调动了学生的主观能动性,培养了学生的创新精神,增强了学生的工程实践能力.
Design of Fish Disease Detection APP Teaching Practice System Based on Deep Learning
Aiming at the problem of lack of experimental teaching content,a fish disease prevention and control teaching practice system with Android and YOLOv5s as the core technology is designed.The system is designed based on the outcomes-based education concept,combines theoretical knowledge with scientific research projects,introduces CDIO(conceive-design-implement-operate)teaching mode,and takes system function design,deep learning development environment construction,fish disease dataset construction,YOLOv5s fish disease detection algorithm design,project deployment and testing,project defense roadshow as the main teaching modules for progressive teaching.Practice shows that the system fully mobilizes students'subjective initiative,cultivates students'innovative spirit,enhances students'engineering practice ability,and greatly improves the teaching effect.

fish disease identificationartificial intelligenceexperimental teachingdeep learning

冼远清、江颖龙、初庆柱、彭小红

展开 >

广东海洋大学数学与计算机学院,广东湛江 524088

广东海洋大学水生生物博物馆,广东湛江 524088

鱼病识别 人工智能 实验教学 深度学习

教育部协同育人项目广东海洋大学本科教学质量与教学改革工程项目广东海洋大学教学研究与改革项目湛江市科技攻关计划

201902303056PX52023243XJG2021502019B01008

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(3)
  • 6