首页|基于改进Bi-RRT与动态窗口法的机器人动态路径规划

基于改进Bi-RRT与动态窗口法的机器人动态路径规划

扫码查看
针对应用双向快速扩展随机树(Bi-RRT)算法进行复杂环境路径规划时,存在采样效率低、冗余节点以及无法实时避障等问题提出一种将改进Bi-RRT与改进动态窗口法(DWA)融合的算法.算法采用双向自适应扩展策略,加快收敛速度以及提高采样效率.引入基于A*算法的节点最优选择及路径优化策略,提高目标导向性和缩短路径长度.改进DWA算法中的评价函数,把全局偏航角与全局路径距离加入评估函数,对轨迹方向的评价更加多样化,实现机器人高效动态避障.融合改进Bi-RRT与改进DWA算法,在Matlab与ROS平台进行实验仿真,结果表明,所提融合算法规划路径短、效率高且能有效避开未知障碍物.
Dynamic Path Planning of Robots Based on Improved Bi-RRT and Dynamic Window Method
In complex environments,the bidirectional fast expanding random tree(Bi-RRT)algorithm,exists problems of low sampling efficiency,redundant nodes and inability in avoiding obstacles,hence,an algorithm based on the fusion of improved Bi-RRT and improved dynamic window method(DWA)is proposed.Firstly,the improved Bi-RRT algorithm adopts the strategy of bidirectional adaptive expansion,which accelerates the convergence speed and improves the sampling efficiency,and introduces the node optimal selection and path optimization strategy based on the A*algorithm to improve the goal orientation and shorten the path length.Then,the evaluation function in the DWA algorithm is improved,and the global yaw angle and global path distance are added to the evaluation function,so as to diversify the evaluation of the trajectory direction and realize the efficient dynamic obstacle avoidance of the robot.Finally,the improved Bi-RRT and improved DWA algorithm are fused,based on MATLAB and ROS platform,the fused algorithm is simulated to verify that the proposed algorithm has a short planning path,high efficiency and can effectively avoid unknown obstacles.

Bi-RRT algorithmDWA algorithmfusion algorithmadaptive expansiondynamic obstacle avoidance

刘越、王天笑、柴秋月、刘芳

展开 >

长春工业大学电气与电子工程学院,长春 130012

Bi-RRT算法 DWA算法 融合算法 自适应扩展 动态避障

吉林省科技发展计划吉林省长春市科技发展计划

20220204090YY23ZCX04

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(5)
  • 16