首页|无人机图像小目标检测实验的设计与实现

无人机图像小目标检测实验的设计与实现

扫码查看
针对无人机图像小目标检测存在目标密集和遮挡等问题,设计了卷积注意力、深度特征融合和多尺度特征融合模块以增强图像小目标的局部信息和语义信息,从而提高对无人机图像小目标特征的提取能力,最后结合改进的损失函数加快了模型的收敛.基于VisDrone2019数据集的实验结果表明,所提模型提高了无人机图像小目标检测精度,减小了目标误检和漏检概率,为复杂场景下无人机小目标检测提供了实验基础.
Design and Implementation of Small Object Detection Experiment in UAV Image
In order to solve the problems such as target density,and occlusion in detecting the small objects of unmanned aerial vehicle(UAV)images,the convolutional attention,deep feature fusion,and multi-scale feature fusion modules are designed to enhance the local and semantic information,which can improve the capability of feature extraction in the small objects of UAV images.Meanwhile,the loss function is improved to accelerate the convergence of proposed model.The experimental results based on the VisDrone2019 dataset show that the proposed model improves the detection accuracy of small objects,reduces the probability of false and missed detections,and provides an experimental basis for small target detection in more complex scenes.

unmanned aerial vehicle(UAV)object detectionfeature fusionexperiment designdetection accuracy

罗成名、刘浩、曹钰鑫、黄志强、王彪

展开 >

江苏科技大学海洋学院,江苏镇江 212100

江苏科技大学自动化学院,江苏镇江 212100

清华大学深圳国际研究生院,广东深圳 518000

无人机 目标检测 特征融合 实验设计 检测精度

2023年江苏省高等教育教改研究立项课题2023年江苏省高等教育教改研究立项课题江苏科技大学2023年度研究生教育教学改革研究课题

2023JSJG3222023JSJG280YJG2023Y_01

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(6)
  • 7