首页|模型预测轮廓控制的机器人群运动规划

模型预测轮廓控制的机器人群运动规划

扫码查看
针对传统机器人群在路径搜索阶段未考虑机器人动力学约束而导致狭窄空间场景中求解失败或无法得到最优解问题,采用一种基于模型预测轮廓控制的方法,同时优化机器人约束与时空域下的避障,获得机器人的轨迹序列并动态优化机器人的运动轨迹.采用模型预测控制实现单机器人的轨迹跟踪,使用自适应参数调节方法,提升整个系统应对不同环境的自适应性.仿真和实验结果表明,在狭窄空间场景,机器人群系统的轨迹耗时短、平均跟踪参考轨迹精度高,具有良好的动态避障、静态避障与轨迹跟踪性能.同时,模型预测控制算法具有精度高、数据稳定等特点,实现机器人群的快速决策路径和快速避障.
Robot Crowd Motion Planning Based on Model Predictive Contouring Control
Aiming at the problem that the traditional robot crowd fails to solve or get the optimal solution in the narrow space scene because the robot dynamics constraints are not considered in the path search stage,model predictive contour control method is used to obtain the trajectory sequence of the robot and dynamically optimize the trajectory of the robot under the condition of optimizing both the constraint and the obstacle avoidance in the time space.odel predictive control is used to realize the trajectory tracking of single robot,and adaptive parameter adjustment method is used to improve the adaptability of the whole system to cope with different environments.The simulation and experiment results show that in the narrow space scene,the robot crowd system has short track time,high average tracking reference track accuracy,and good performance of dynamic obstacle avoidance,static obstacle avoidance and track tracking.At the same time,the model predictive control algorithm has the characteristics of high precision and stable data,so as to realize the fast decision path and fast obstacle avoidance of the robot crowd.

model predictive contouring control(MPCC)model predictive control(MPC)motion planningrobot operating system(ROS)

葛亚明、陈杰浩

展开 >

哈尔滨工业大学(深圳)实验与创新实践教育中心,广东深圳 518055

哈尔滨工业大学(深圳)机电工程与自动化学院,广东深圳 518055

模型预测轮廓控制 模型预测控制 运动规划 机器人操作系统

2020年广东省重点领域研发计划资助项目

2020B0909030001

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(7)