首页|基于数值模拟和机器学习的岩石力学性能预测

基于数值模拟和机器学习的岩石力学性能预测

扫码查看
针对传统方法在岩石力学性能研究中的不足,提出一种兼具准确、高效的有限元数值模拟和多目标机器学习的岩石力学性能预测方法.采用连续损伤力学方法对岩石力学试验过程细观有限元模拟,得到机器学习的样本数据;以单轴抗拉/抗压强度、弹性模量、泊松比和围压为特征变量,以应力-应变矩阵和损伤变量矩阵为目标变量,采用粒子群-随机森林算法建立岩石三轴力学性能预测模型;在此基础上,开发岩石三轴力学性能预测系统,实现应力-应变曲线和破坏形态的直观显示.该方法在岩石力学实验教学中取得了良好的效果,也为工程设计和计算提供了有益的参考.
Prediction of Rock Mechanical Properties Based on Numerical Simulation and Machine Learning
A novel approach for predicting rock mechanical properties,which combines accuracy and efficiency,is proposed based on finite element numerical simulation and multi-objective machine learning to address the shortcomings of traditional methods in the study of rock mechanics performance.A microscale finite element simulation of rock mechanics experiments is conducted using the continuum damage mechanics method to obtain the sample data for machine learning.Uniaxial tensile/compressive strength,elastic modulus,Poisson's ratio,and confining pressure are used as feature variables,while stress-strain matrix and damage variable matrix are used as target variables.A rock triaxial mechanical performance prediction model is established using the particle swarm-random forest algorithm.Based on this,a rock triaxial mechanical performance prediction soft is developed,which enables the intuitive display of stress-strain curves and failure patterns.This approach achieves good results in rock mechanics experimental teaching and provides effective references for engineering design and calculations.

rockmechanical propertiesnumerical simulationmachine learning

王海静、周博、薛世峰、杜中哲

展开 >

中国石油大学(华东)储运与建筑工程学院,山东青岛 266580

岩石 力学性能 数值模拟 机器学习

国家自然科学基金青年基金项目

51804323

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(7)